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Abstract
Previous principal component analyses of ocean color absorption coefficient spectra a λð Þ have shown the var-

iation in these data is captured by a few eigenfunctions. Here, we perform an unsupervised, non-negative matrix
factorization (NMF) of a λð Þ to derive their fundamental and physically interpretable modes. When applied inde-
pendently to two large datasets—one semi-empirical and one from inline measurements of the Tara Microbiome
expedition—we find that four NMF basis functions describe > 99:9% of the variance in each. Furthermore,
despite significant differences between the datasets in methodology and by geographic and temporal acquisi-
tion, the two sets of basis functions show very similar features at wavelengths λ≈400�750 nm. Two of the
modes capture the amplitude and spectral slope of absorption by color dissolved organic matter and/or detritus.
The other two describe absorption by phytoplankton (aph) separated into the pigments that couple tightly to
the chlorophyll a (Chl a) 675nm feature and another that captures aph variability at ≈450 nm. Together, the
majority of ocean color absorption is physically described by these four fundamental modes. We present several
applications of the NMF analysis including the exploration of geographic trends in particulate composition, the
search for outlier absorption spectra, and the application of a new, additive decomposition of aph. Lastly, we
detail the limitations of this technique, especially in the context of mechanistic approaches more commonly
adopted in the literature.

The constituents near the ocean’s surface—for example, sea
water, phytoplankton, dissolved organics, minerals, detrital
particles—absorb and scatter sunlight to give the ocean its
apparent color. These constituents play a variety of physical
and biogeochemical roles in the ocean system and tracking
them through space and time is critical to our understanding of

key oceanographic processes (e.g., Ismail and Al-Shehhi 2023;
Litchman et al. 2015; McClain 2009). As such, a primary focus
of ocean color observations by oceanographers is to determine
the constituents in sea water across the Earth’s ocean including
coastal waters (e.g., Loisel et al. 2018; Werdell et al. 2013).
These measurements may then be used operationally to moni-
tor hazards such as red tides or to understand biogeochemical
processes ranging from discharged river sediments to global
phytoplankton growth and composition (e.g., IOCCG Protocol
Series 2008).

A standard approach to any such analysis is to consider one
or more inherent optical properties (IOPs), properties of the
medium that are invariant to the ambient light field. Inherent
optical properties like absorption coefficient spectra a λð Þ are
set by the components of ocean water—phytoplankton, col-
ored dissolved organic matter (CDOM), pure (salt) water—and
offer a path to focus the analysis on the items of scientific
interest as opposed to other factors that impact the observa-
tions (e.g., the atmosphere or the Sun’s angle).

Despite the complexity of the living ocean, previous research
has emphasized that the global variations in IOPs like the

*Correspondence: jxp@ucsc.edu

This is an open access article under the terms of the Creative Commons
Attribution-NonCommercial License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited
and is not used for commercial purposes.

Associate editor: David Antoine

Data Availability Statement: All of the code and results presented here
are available on GitHub in these two repositories: https://github.com/AI-
for-Ocean-Science/cnmf, https://github.com/AI-for-Ocean-Science/ocean-
color. All Tara Microbiome optical data are available in raw form at NASA’s
SeaBASS archive via the search keyword “Tara_Microbiome.” All data pre-
pared and formatted for this study is available on GitHub https://github.
com/patrickcgray/spatial_patchiness_tara, easily ingestable as a geofeather
at multiple stages of processing.

1

https://orcid.org/0000-0002-7738-6875
mailto:jxp@ucsc.edu
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://github.com/AI-for-Ocean-Science/cnmf
https://github.com/AI-for-Ocean-Science/cnmf
https://github.com/AI-for-Ocean-Science/ocean-color
https://github.com/AI-for-Ocean-Science/ocean-color
https://github.com/patrickcgray/spatial_patchiness_tara
https://github.com/patrickcgray/spatial_patchiness_tara
http://crossmark.crossref.org/dialog/?doi=10.1002%2Flno.70098&domain=pdf&date_stamp=2025-06-28


absorption coefficient may be reduced to a few (mathematical)
eigenvectors (e.g., Cael et al. 2020a; Garver et al. 1994). This
reflects several properties of the ocean and the datasets: (1) the
relative similarity of ocean constituents across the open ocean
(e.g., Bricaud et al. 1995); (2) physical correlations between the
components that are present even in complex waters (Cael
et al. 2020a; Morel 1988); and (3) the similarity of absorption
profiles between several components, for example, CDOM and
detritus (Stramski et al. 2001) or phytoplankton pigments
(A. Chase et al. 2013). These properties motivate decomposi-
tions of IOPs to a few basis functions that contain (nearly) all of
the information content.

In oceanography and other sciences, a common approach
to data decomposition is to perform a principal component
analysis (PCA; Jolliffe and Cadima 2016, often referred to as
empirical orthogonal functions or EOF). A PCA decomposes a
dataset into a series of orthonormal eigenvectors which
minimize the variance in the data relative to their mean. It is
optimal and rigorously mathematical, but the resultant
eigenspectra need not on their own have scientifically relevant
shapes. Therefore, the reduced representation described by the
derived eigenvectors may offer limited interpretability. One is
thus motivated (when possible) to consider other, more physi-
cally relevant decompositions.

Indeed, the ocean color literature includes many examples
of mechanistic decompositions of IOPs, especially of
absorption coefficient spectra (e.g., Garver and Siegel 1997;
Kehrli et al. 2024; Werdell et al. 2013; Zhang et al. 2015).
These models adopt empirically derived or motivated compo-
nents from laboratory work and/or analyses of isolated
components of seawater (e.g., CDOM). While these models
are more physical than PCA and therefore highly interpret-
able, they are not guaranteed to describe the great diversity of
absorption spectra. Or, if they have sufficient complexity
(e.g., many components), they may incur significant degener-
acy and correlations that limit applicability. In this
manuscript, we seek a decomposition that compactly describes
the variance in absorption spectra while maintaining
interpretability.

To this end, we introduce a new technique for ocean color
applications known as Non-negative matrix factorization
(NMF) analysis (Lawton and Sylvestre 1971). Similar to PCA,
the NMF decomposition is unsupervised, that is, the algorithm
“learns” the dominant correlations in the data to optimally
describe the dataset. Furthermore, it is compact, that is, the
NMF decomposition is designed to describe variations in
the dataset with the fewest number of modes. The primary
and critical difference from PCA is that the basis functions
(akin to PCA eigenvectors), coefficients, and input data are all
non-negative.

Mathematically, NMF is a regularized matrix decomposi-
tion of non-negative data into a set of non-negative
basis functions and positive coefficients. The NMF algorithm
was introduced originally to describe chemical systems

(Lawton and Sylvestre 1971), and has been applied in a vari-
ety of fields ranging from the flux of astronomical sources
(G. Zhu, unpublished) to bioinformatics (Taslaman and
Nilsson 2012). It is well suited to IOPs like a λð Þ where the
quantity is non-negative. Furthermore, NMF is advantageous
relative to PCA when the mean of the dataset is not relevant
or is itself non-physical.

In the following, we perform an NMF decomposition of
absorptions spectra from two distinct and large datasets. First
and foremost, we seek a compact set of highly interpretable
basis functions that describe the primary variations in absorp-
tion spectra across the global ocean. In turn, we will assess the
number of modes required to explain a high percentage
(�99%) of the variance while maintaining interpretability.
We will then explore geographic trends in the NMF coeffi-
cients calculated from the decomposed absorption spectra and
examine spectra that are poorly fitted by the basis functions
(aka outliers). Last, by demonstrating the value of NMF
analysis on absorption coefficient spectra, we may promote
like-studies on other non-negative and frequently measured
quantities in ocean optics: backscattering, diffuse attenuation
coefficients, remote-sensing reflectances.

Materials
Data

We seek a decomposition of the absorption coefficient that
is broadly applicable, that is, applies to both Case I (phyto-
plankton dominated, and typically but not exclusively, in
clear and open ocean waters) and Case II (turbid, complex,
coastal) waters. To this end, we considered absorption spectra
from the literature obtained across a range of geographic loca-
tions and sampling a range of water types. Furthermore, we
have restricted to datasets with a high quality control and
those with spectral sampling no coarser than 10 nm.

For this manuscript, we selected the absorption spectra
from Loisel et al. (2023) (hereafter L23) and the Tara Mission
Microbiomes AtlantECO (hereafter just; Tara; Gray
et al. 2025). There are, of course, additional datasets available
that satisfy our criteria (e.g., other Tara missions; Jordan
et al. 2024; Valente et al. 2022). However, we considered the
two datasets examined here to be sufficient as they span
the global ocean and were derived with different protocols.
Geographic maps of each dataset may be found in Fig. 1 of
L23 and Fig. 9 of this manuscript (Tara).

Indeed, the instrumentation and processing methodology
for these two datasets is entirely independent. The aph spectra
from L23 was obtained with the filter-pad spectrophotometric
method where one first measures the total particulate absorp-
tion spectrum ap λð Þ and then subtracts off an independent
estimate of the non-algal particulate absorption to infer aph
(IOCCG Protocol Series 2018). The aph spectra collected and
collated by L23 were then combined with simulated absorp-
tion by CDOM and detritus (each an exponential function
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with unique amplitude and shape). For the NMF analysis that
follows, we use the non-water absorption spectra anw λð Þ of L23
as one set of inputs. We restrict to wavelengths λ¼410�700
nm and adopt the 5nm sampling of their dataset.

The absorption spectra from Tara was collected via an AC-s
absorption meter (Seabird Scientific) running continuously on
a ship-based underway flow-through system. Absorption by
sea water and dissolved matter (i.e., CDOM) has already been
removed from the Tara dataset as part of their standard meth-
odology (Slade et al. 2010) which subtracts the dissolved

component (operationally defined as absorption with a
0.2-μm filter attached to the instrument’s intake) from the
total yielding the particulate absorption spectrum:

ap λð Þ� a λð Þ�a0:2μm λð Þ ð1Þ

This also helps remove instrument drift and biofouling. In
this manuscript, we analyze a newly reprocessed version of
Tara Microbiome (Gray et al. 2025). Regarding additional
processing, we removed any spectrum containing one or more

Fig. 1. The top panel shows four representative absorption spectra (with varying magnitude) from the two major datasets examined in this manuscript:
Tara (orange; ap) and L23 (blue; anw). We have selected examples with high (solid) and low (dotted) absorption at 440nm as described by the legend.
All of these spectra have been normalized at that wavelength, for presentation purposes only. The lower panels describe the distributions of absorption at
440nm (left, a440) and 675nm (right, a675) of the two datasets (non-water absorption for L23 and particulate absorption for Tara). It is evident that the
Tara dataset includes a larger fraction of spectra with higher absorption at all wavelengths λ>440 nm stemming from the coastal focus of this
expedition.
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negative values on concerns that the data were not properly
subtracted. We then rebin the Tara spectra onto the same
410–700 nm grid as L23 with 5 nm sampling using nearest-
neighbor interpolation. This sampling is close to the native
sampling of the AC-s absorption meter, and these resampled,
particulate absorption spectra ap λð Þ are the 2nd input dataset
for our NMF analysis.

Altogether, there are 3320 (239,880) spectra for L23 (Tara).
Figure 1 shows a set of representative data taken from water
with a distinct set of properties characterized by the absorp-
tion at 440 nm, a440. One recognizes the strong and increasing
absorption at λ<500 nm associated with CDOM and/or detri-
tus layered on top of phytoplankton pigment absorption and
the “bump” at λ≈675 nm characteristic of Chl a (Bricaud
et al. 2004). These are common across spectra, but the heights
and slopes of these features vary. Our formalism seeks to
describe such variations in the dataset with a limited number
of basis functions.

The lower panels of Fig. 1 show the distribution of
absorption at 440 nm and 675 nm. The two datasets
overlap although the L23 distributions tend toward lower
values that are more characteristic of open waters. The
other point to emphasize is that the incidence of highly
turbid waters (e.g., a440 �1 m�1) is rare in both datasets.
Future work may consider the analysis of a balanced dataset
that samples more uniformly in a metric like a440. Future work
could also include additional datasets that emphasize coastal
waters and/or regions not well covered by the ones
studied here.

Formalism
The NMF algorithm was introduced by Lawton and Syl-

vestre (1971) and then refined by Paatero and Tapper (1994);
it has since been employed in a range of fields. Provided a
dataset with dimensions N�M (number of spectra, number of
features [i.e., number of wavelength channels]), one seeks
solutions to the matrix equation:

X¼WH ð2Þ

where W is a matrix of basis functions (akin to PCA eigenvec-
tors) and H are the coefficients that encapsulate the decompo-
sition of each input spectrum. Like PCA, the NMF algorithm is
additive and linear, but unlike a PCA decomposition all ele-
ments of X,H, and W are required to be non-negative. Also
similar to PCA, one may construct W to have a lower dimen-
sionality m than the feature space (i.e., m<M). In this case,
the matrices W and H have shapes M�m and N�m, respec-
tively, and the m basis functions provide a reduced
(i.e., compact) representation of the dataset.

Because there is typically no exact solution to Eq. 2 (even
with m¼M), one instead seeks solutions that minimize a
cost function L. The standard function resembles the χ2

function,

L¼ X�WHð Þk k2 ð3Þ

which assumes homoscedastic errors. Zhu extended this for-
malism to include heteroscedastic uncertainties and masked
data encapsulated in a weight matrix V:

L¼ V1=2 � X�WHð Þ
���

���
2

ð4Þ

They also provided a Python package (Zhu 2023) to solve
for X adopting the technique of Lee and Seung (1999).

We have taken their code, and the follow-up work of Ren
et al. (2018) for our NMF decomposition analysis. One modifi-
cation to this standard NMF treatment is that we normalize
the basis functions to sum to unity:

X

i

Wij ¼1 for all jð Þ ð5Þ

This gives meaning to the relative values of the coefficients.
The other algorithmic advance implemented is to allow the
user to fix one or more of the basis functions in the W matrix,
that is to explicitly specify one or more of the modes. We refer
to this option as a constrained NMF.

Results
In this section, we decompose the absorption coefficient

spectra for the L23 (specifically, non-water absorption spectra
anw) and the Tara (particulate absorption, ap) datasets. For
each dataset, the NMF analysis yields a set of basis functions
(WL23, WTara) using the methodology presented in the previ-
ous section. At the same time, we derive coefficients (HL23,
HTara) for each spectrum of each dataset.

Non-negative matrix factorization decomposition of L23
With the anw λð Þ spectra from L23 as the input, we per-

formed an NMF decomposition with mNMF ¼2 to 10 basis
functions. For the calculation of the cost function given by
Eq. 4, we assumed a constant error of 0:05m�1 to provide
equal weighting of the data. The results are invariant to the
value provided it is a constant and non-zero. Figure 2 shows
the unexplained variance as a function of mNMF and these are
compared against a similar evaluation using a PCA decomposi-
tion. For m ≤5, the two approaches explain nearly the same
portion of variance per component. Similar to previous work
(e.g., Cael et al. 2020a; Garver et al. 1994), we find that only
m¼3 components are required to explain ≈99:9% of the vari-
ance and m¼5 components explain ≈99:99%. Furthermore,
the variance per mode declines more steeply than a �2 power-
law slope indicating the information content in the higher
order modes is very low. The curves depart slightly at m>5
which we hypothesize is due to the PCA better describing
small fluctuations in the data (e.g., noise) owing to its partially
negative basis functions.
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For the remainder of the manuscript, we will focus on NMF
models with mNMF ¼4 which we will argue represent the fun-
damental modes of ocean color absorption. The choice of
mNMF ¼4 was motivated by two factors. First, we found that
an mNMF ¼3 model insufficiently captures variations related to
phytoplankton absorption. These variations are small but of
significant scientific interest to warrant inclusion. Second, we
found that a 5th basis function (mNMF ¼5) shows high fre-
quency features that are more characteristic of noise than true
absorption. Together, this led us to adopt mNMF ¼4 decompo-
sitions for the L23 and Tara datasets.

Figure 3 presents a comparison of the PCA and NMF
decompositions of the L23 dataset with mNMF ¼4. The former
is explicitly orthonormal and therefore exhibit negative
“absorption” features which are non-physical: no true absorp-
tion spectra can take on negative values. Indeed, we may
struggle to interpret anything other than the first PCA mode.
In contrast, the NMF basis functions are explicitly non-nega-
tive, and the first two (W1, W2) are easily interpreted: these
resemble absorption by CDOM and Chl a, respectively. In
“Physical interpretation of the NMF basis functions” section,
we interpret the other two basis functions (W3, W4) as varia-
tions in the shape of CDOM/detritus and phytoplankton
absorption.

Supporting Information Fig. S1 shows NMF decompositions
for two representative non-water absorption spectra from the

Fig. 2. The unexplained variance (i.e., 1 � explained variance) for princi-
pal component analysis (PCA, blue) and non-negative matrix factorization
(NMF, green) decompositions of the L23 dataset as a function of the
number of components (m). In both cases, the decompositions explain
≈99:9% of the variance with only m¼3 components and ≈99:99% of
the variance with m¼5.

Fig. 3. Basis functions for the L23 dataset from the principal component analysis (PCA, left) and non-negative matrix factorization (NMF, right). While
the first two PCA eigenfunctions bear some resemblance to known a λð Þ spectra, not even these follow physical functions closely. For example, W2 for the
PCA shows strong negative “absorption” at the 670nm peak of Chl a. In contrast, the first two NMF basis functions (W1, W2) strongly resemble those of
colored dissolved organic matter (CDOM) and phytoplankton respectively. We discuss these and further interpretations in “Physical Interpretation of the
NMF Basis Functions” section.
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L23 dataset. In both cases, the NMF model closely matches
the data, confirming the NMF basis functions capture the
detailed features of absorption spectra. Examining the decom-
positions, we note the absorption blueward of ≈550 nm is
dominated by the 1st basis function WL23

1 and the HL23
1 coeffi-

cient is correspondingly large. Variations in the other compo-
nents suggest differences in phytoplankton absorption and/or
differences in the slope of the CDOM/detritus absorption. We
will explore these later in the manuscript.

Our NMF analysis generated a decomposition for every L23
absorption spectrum and the NMF coefficients for all of these
are provided in Supporting Information Table S1, indexed by
the row number of the L23 dataset. The basis functions WL23,
meanwhile, are provided in the data repository on GitHub
that accompanies this manuscript.

Non-negative matrix factorization decomposition of the
Tara dataset

Consider next an NMF analysis of the Tara dataset. First,
we fit the Tara dataset using the four basis functions derived
from the L23 data (WL23; Fig. 3b) to test the extent to which
these basis functions generalize. We refer to the resultant coef-
ficients as HL23

Tara, that is, L23 basis functions applied to Tara
data. Even though the L23 basis functions were derived from
non-water absorption spectra anw λð Þ and then applied to the
particulate absorption spectra of Tara we find the fits explain
> 99:5% of the variance in the Tara dataset. In this respect,
the NMF basis functions may be considered a general repre-
sentation of non-water absorption spectra.

We also find that for each of the four basis functions, the distri-
bution ofHL23

Tara values are shifted to higher values. This is espe-
cially true for HL23

Tara,2 and HL23
Tara,4 which are nearly an order of

magnitude higher on average. This follows expectation given that
TaraMicrobiome surveyed a higher fraction of coastal waters than
themore open-oceanwaters considered by L23. Although theTara
experiment has subtracted off absorption due to dissolved organic
matter (with size<0.2μm; Slade et al. 2010), the signal for the
CDOM-like basis function (WL23

1 ) also exceeds that of the L23
dataset. We expect, that these high HL23

Tara,1 values are due to
non algal particles NAP (see “W1 represents the degree of
CDOM and/or detritus absorption” section).

We have performed a separate and independent mNMF ¼4
NMF analysis of the Tara dataset, deriving a unique set of basis
functions WTara and a complete set of coefficients HTara for the
239,880 absorption spectra (listed in Supporting Information
Table S2, and indexed by the Unix nanosecond timestamp of
each observation). Figure 4 compares the derived basis func-
tions from Tara (WTara) with those from L23 (WL23). The first,
somewhat striking result is that with the exception of W3 the
basis functions closely resemble one another. The 1st basis
function for each (W1) shows a nonlinear increase in absorp-
tion to the blue with the primary difference being a somewhat
shallower slope for Tara (measured in “W1 represents the
degree of CDOM and/or detritus absorption” section). The

WTara
2 with WL23

2 profiles are also very similar; the small differ-
ences are a trade-off between weaker absorption in Tara at
λ≈450 and ≈600 nm with higher absorption at ≈525 and
675nm. Lastly, the W4 basis functions of each dataset are
dominated by absorption at λ≈430�550 nm. Given the sig-
nificant differences in methodology as well as in the geo-
graphic and temporal acquisition, the commonality between
the two datasets is remarkable and implies these are funda-
mental basis functions for absorption in the global ocean.

The greatest difference between the NMF decompositions is in
the 3rd basis function,W3. The gross shapes are similar and each
exhibits a (non-physical) absorption “trough” at λ>675 nm,
but the W3 absorption is shifted to redder wavelengths
(λ≈500�650 nm). Below, we argue that this difference in W3

primarily reflects the dominance of CDOM in L23 and NAP
in Tara.

Discussion
Physical interpretation of the NMF basis functions

The previous section presented the NMF decompositions
independently for the L23 and Tara datasets. Figure 4 com-
pares the two and we reemphasize the commonality of the
derived basis functions. Unlike previous unsupervised decom-
positions of a λð Þ spectra (e.g., PCA; Cael et al. 2020b), these
basis functions are non-negative and therefore, in principle,
more interpretable than previous decompositions. In this sec-
tion, we proceed to connect each basis function to a distinct
and physically meaningful aspect of ocean color absorption.

W1 represents the degree of CDOM and/or detritus
absorption

Readers familiar with the absorption coefficient will recog-
nize that W1 from each dataset exhibits a steeply rising
(i.e., nonlinear) absorption profile representative of CDOM
and/or NAP. Previously, these components have been
modeled with either an exponential or power-law functional
form. Figure 5 shows separate functional fits to the WL23

1 and
WTara

1 basis functions where we have assumed a power-law,

a λð Þ¼Aβλ
�β ð6Þ

and an exponential

a λð Þ¼AS exp �S λ�440 nmð Þ½ � ð7Þ

restricted to the interval λ¼410�530 nm where CDOM/detri-
tal slopes are commonly assessed (e.g., Kehrli et al. 2023,
although our results are largely insensitive to the range).
Adopting standard techniques and assuming constant
weighting at each wavelength of the basis function, we derive
best-fit shape parameters for these functional forms: (1)
power-law: βL23 ¼7:3 and βTara ¼5:5 for L23 and Tara, respec-
tively, and (2) exponential: SL23 ¼0:016 and
STara ¼0:012nm�1. For WL23

1 , the power-law exponent and
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exponential constant compare favorably to literature values
for CDOM (Stramski et al. 2001) and the parameters for
CDOM adopted by L23. This slope has been used previously
as an indicator for CDOM composition, where steeper slopes
suggest older (refractory) compounds and flatter slopes suggest
newer (labile) compounds (Carder et al. 1989).

Comparing the slopes for Tara with those for the L23 basis
function, we find the WTara

1 basis function has a shallower
slope (βTara < βL23, STara < SL23) which is more reflective of NAP
than CDOM (Iturriaga and Siegel 1989). The estimated slope
for WTara

1 is also consistent with the NAP spectrum adopted by
previous fits to Tara spectra (A. Chase et al. 2013). We can fur-
ther test the inference that WTara

1 primarily expresses NAP
absorption by comparing the HTara

1 coefficients for the Tara
spectra against an estimate of CDOM concentration from the

Tara project via a concurrent measurement from a UV fluo-
rometer. We find the HTara

1 coefficients are not tightly corre-
lated with the CDOM estimate (Kendall’s τ¼0:2), and we
conclude that the absorption expressed by WTara

1 is primar-
ily NAP.

We emphasize that the WL23
1 basis function simultaneously

captures the absorption from CDOM and NAP in the L23
dataset (their ag and ad). This is illustrated in the right-hand
panel of Fig. 5 which compares HL23

1 against the summed
absorption of CDOM and detritus (adg) evaluated at 405nm.
These are tightly correlated and we confirm that the WL23

1

basis function expresses the majority of the absorption associ-
ated with these two components. We further emphasize that
because WL23

1 is the only basis function with rising absorption
at the bluest wavelengths, the individual components are

Fig. 4. Comparison of the non-negative matrix factorization (NMF) basis functions derived independently for the L23 (blue; same as Fig. 3b) and Tara
(orange) datasets. Qualitatively, the first two and last basis functions—W1, W2, W4—are remarkably similar. The WTara

1 basis function shows a nonlinearly
increasing absorption to shorter wavelengths similar to the colored dissolved organic matter (CDOM) and detritus driven WL23

1 profile, but shallower and
more consistent with pure non-algal particle absorption. The WTara

2 basis functions are very similar indicating the pigments that co-vary with Chl a are
similar between the two experiments. We draw a similar conclusion for W4 which we infer tracks additional phytoplankton absorption that does not co-
vary strictly with Chl a. The largest differences lie in the W3 basis functions which compensate for differences in slope for CDOM and/or detritus.

Prochaska and Gray Fundamental modes of ocean color absorption
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degenerate, that is, our NMF analysis indicates that it is very
difficult to differentiate between these two components based
on absorption alone.1

One also notes that the W1 basis function for each dataset
exhibits a weak absorption feature at ≈675 nm that is not pre-
sent in any real CDOM or detritus spectrum. We expect this is
due to co-variance between Chl a and CDOM/detritus absorp-
tion. It could be removed (e.g., one could interpolate across
the feature) and new basis functions with that modification
could be performed with the constrained NMF method
described in “Formalism” section.

W3 represents the slope of CDOM and/or detritus absorption
For both L23 and Tara, the W3 basis function expresses

absorption across a majority of wavelengths in the analysis win-
dow (Fig. 4). Furthermore, unlike the other basis functions, W3

does not resemble any common features of phytoplankton.
Our examination of W3 indicates it primarily captures diver-
sity in the spectral slope of CDOM and/or detritus absorption.

As one example, Fig. 6a shows a fit from the Tara dataset
with very strong detrital absorption. In this case, the spectral
slope at λ<600 nm is much shallower than the WTara

1 basis
function that generally captures NAP absorption. To

compensate, the fit includes a large HTara
3 component (and an

unphysically large HTara
2 component). This is one of many

examples where HTara
3 is driven to large values to yield detritus

absorption with a shallow slope.
This inference that W3 accounts for shallow CDOM and/or

detritus absorption is further supported by Fig. 6b. Here, we
plot a measure of the slope of adg from L23 using the ratio of
absorption at 500 to 405nm: L23 500ð Þ=L23 405ð Þ. For spectra
with the lowest HL23

3 values (here plotted at 10�3 for presenta-
tion purposes), the L23 500ð Þ=L23 405ð Þ values are smallest, that
is, the adg absorption is steepest. As HL23

3 increases, the ratio
increases albeit with significant scatter. A Kendall’s tau rank
correlation test rules out the null hypothesis of an absence of
association at very high confidence level ( > 99:9999%). We
conclude that W3 primarily tracks the slope of CDOM and/or
detritus absorption in the ocean.

W2 and W4 represent absorption by phytoplankton
An inspection of W2 gives the impression of absorption

generally attributed to Chl a and related pigments
(e.g., Mobley 2022). Of the four basis functions, it is also the
most expressive of the 675nm absorption feature of Chl a.
This is further emphasized in Fig. 7 which compares the HTara

2

values against the standard metric for Chl a from the Tara
experiment, the 675nm line height (Tara LH; Boss et al. 2001;
Roesler and Barnard 2013). These two metrics are highly

Fig. 5. (Left) Fits to the first non-negative matrix factorization (NMF) basis functions from the L23 and Tara datasets: an exponential model with scaling
parameter S (black dashed) and a power-law model with exponent β (black, dotted). Each of these is a good description of the data and we find that the
Tara profile is systematically shallower at these wavelengths. This follows from the generally stronger absorption by colored dissolved organic matter
(CDOM) relative to non-algal particles in the L23 spectra. (Right) Comparison of the HL23

1 coefficient with the combined absorption by CDOM and detri-
tus adg evaluated at 405nm. The very tight correlation between the two demonstrates that HL23

1 successfully describes the absorption from these two
constituents.

1We note that extending the analysis to λ<400 nm yields similar results
and degeneracy.

Prochaska and Gray Fundamental modes of ocean color absorption
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Fig. 6. (Left) The black curve shows a particulate absorption coefficient spectrum ap λð Þ from the Tara Expedition with very strong detritus absorption
(observed at 27.04 S, 48.50W on November 19, 2021). The colored, dotted curves show the decomposition of ap λð Þ into the four non-negative matrix
factorization (NMF) basis functions with the total model given by the solid, blue curve. Because the detrital absorption is much shallower than the WTara

1
basis function, the decomposition also includes a strong WTara

3 component which captures the detrital absorption at λ≈600 nm. Examples like this indi-
cate the HTara

3 coefficient primarily expresses strong and shallow detrital absorption. (right) Binned histogram of HL23
3 coefficients vs. an estimate of the

slope of colored dissolved organic matter (CDOM) and detritus absorption adg based on the ratio of absorption at 500nm relative to 405nm (shallower
slopes have higher values). The two are highly correlated; a Kendall’s tau test rules out the null hypothesis for no correlation at greater than 99.999%
confidence. Similar to the Tara example, higher HL23

3 coefficients indicate shallower absorption by CDOM and detritus. Note that for presentation pur-
poses, we set a minimum value to HL23

3 of 10�3.

Fig. 7. (Left) Histogram of the Chl a Tara LH measurement at ≈675 nm against the H2
Tara coefficient which most expresses the 675nm feature. The

observed, tight correlation between the two quantities is expected and indicates the W2 basis function tracks Chl a absorption and the pigments most
closely associated with Chl a. (Right) Histogram of the absorption by phytoplankton at 440nm aph 440ð Þ from the L23 dataset against the sum of the
coefficients (H2

L23þH4
L23) for the basis functions that we argue primarily describe phytoplankton absorption. The tight correlation observed is significantly

poorer if we consider only one of the two basis functions.

Prochaska and Gray Fundamental modes of ocean color absorption
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correlated (Kendall’s tau statistic of 0.88; p-value < 10�5) and
the correlation does not improve by including any of the
other NMF basis functions. On its own, the HTara

2 coefficient
provides a direct estimation of the Chl a concentration as
assessed by Tara LH. Assuming a linear relationship between
the two quantities, we find logTara LH≈1:25logHTara

2 þ0:28,
which recovers Tara LH with a mean absolute error of ≈23%.

The W2 basis function also shows absorption at λ≈450 nm
characteristic of Chl b and other pigments known to covary
with Chl a. The absorption at these bluer wavelengths, how-
ever, is less than that typically observed in published absorp-
tion spectra of phytoplankton (e.g., Lomas et al. 2024;
Stramski et al. 2001). This “missing” absorption is captured by
W4 which we infer defines pigments, functional families
and/or packaging that correlates with Chl a but not strictly. In
short, we argue that W2 and W4 together define the absorp-
tion from phytoplankton with W2 capturing the absorption
tightly correlated with the 675nm feature and W4 describes
variability in aph at ≈450 nm due to pigment variations and
packaging effects.

To test this hypothesis, we have also performed an NMF
decomposition of the phytoplankton absorption spectra aph from
the L23 dataset (see “Modeling variations in aph with NMF”
section for details). We find the resultant two basis functions
closely resemble those of W2 and W4. Second, Fig. 8 shows a
least-squares fit to the sum of WL23

2 and WL23
4 . For this fit, we

take the following pigments from Bricaud et al. (2004): Chl
a, Chl b, Chl c1, Peri, β-Car. These were chosen primarily
because they show significant absorption at λ≈400�600 nm.
Aside from the data at 550nm< λ<650 nm; the fit offers a rea-
sonable description for the sum of these basis functions, that
is, further evidence that together they describe aph.

Lastly, we compare the sum of the coefficients for the W2

and W4 basis functions (HL23
2 +HL23

4 ) against the known
aph 440ð Þ values of the L23 spectra. These quantities are tightly
correlated (Fig. 7b; Kendall’s tau p-value < 10�5) and we con-
clude that together W2 and W4 describe variations in phyto-
plankton absorption across the global ocean.

Previous studies of aph have described its variation with
Chl a concentration Chl a (Bricaud et al. 1995; Bricaud and
Stramski 1990). The dominant modulation is the flattening in
absorption at blue-green wavelengths (λ≈420�525 nm) as
Chl a increases. Bricaud et al. (1995) and previous works
attributed these variations to both the degree of pigment pack-
aging and the covariation of additional pigments with Chl a.
Furthermore, they introduced a functional form for aph which
has a power-law dependence on Chl a, that is, aph /Chl aB.
Our data-driven decomposition of the absorption coefficient
has captured in W2 and W4 two modes of an additive model
without any explicit dependence on Chl a. We offer further
comparison between the NMF decomposition and the power-
law expression of Bricaud et al. (1995) in “Modeling variations
in aph with NMF” section, finding that the additive model sta-
tistically offers a better description of aph.

Applications
In the previous section, we scientifically interpreted the

four basis functions that successfully describe natural variabil-
ity in the non-water absorption spectra of the global ocean.
We now introduce several example applications that leverage
these basis functions, the decompositions (i.e., coefficients) of
the individual absorption spectra, and/or additional NMF
analysis. We also comment on the limitations of the

Fig. 8. Fit to the sum of the WL23
2 and WL23

4 basis functions derived from the L23 dataset. Here, we considered a linear sum of 5 pigments associated
with phytoplankton as described in the legend. These can describe WL23

2 at the majority of wavelengths with the clear exception of 550< λ<650 nm
where additional pigments must contribute.

Prochaska and Gray Fundamental modes of ocean color absorption
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NMF technique, especially in comparison to other approaches
for the decomposition of absorption spectra.

Non-negative matrix factorization coefficients for particulate
composition across regions

One application is to examine the values of the decomposi-
tions (i.e., H coefficients) from the individual absorption spec-
tra as a function of geographic location to infer trends in

CDOM, NAP, and phytoplankton. We note that a benefit here
over other decompositions is that we are less likely to read
into noisy and uncertain derived values and thus
over-interpret a less than trustworthy biogeochemical signal.
Figure 9 shows plots of the spatial distributions of the HTara

coefficients from the Tara Microbiome expedition. The top
panels describe absorption by NAP (HTara

1 ) and phytoplankton
(HTara

2 þHTara
4 ), and we find generally expected patterns in NAP

Fig. 9. Spatial distribution of the non-negative matrix factorization (NMF) decompositions (coefficients) for the Tara Microbiome dataset. Clockwise
from the top left is HTara

1 which primarily traces primarily non-algal particles, HTara
2 þHTara

4 which assesses phytoplankton absorption, HTara
4 = HTara

2 þHTara
4

� �

which describes phytoplankton spectra modulation, and HTara
3 = HTara

1 þHTara
3

� �
which primarily emphasizes the NAP slope modulation. Note in the bottom

row that higher values indicate more deviation from the base eigenvectors of H1 and H2.

Prochaska and Gray Fundamental modes of ocean color absorption
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and Chl a (both are higher in coastal regions relative to the
open ocean and there is a strong correlation between
the two).

The lower two panels of Fig. 9 examine modulations in the
slope of detrital absorption HTara

3 = HTara
1 þHTara

3

� �
and variations

in the phytoplankton absorption HTara
4 = HTara

2 þHTara
4

� �
. We use

normalized ratios here to emphasize the differences in the
coefficients since generally most of the coefficients are corre-
lated across space and time. As described in “W3 represents
the slope of CDOM and/or detritus absorption” section, the
W3 basis function appears to correspond to the shape of NAP
absorption where an increase in H3 results in flatter NAP spec-
tra. Our expectation is broadly that a shallower NAP slope
may indicate mineral dominated assemblages and a steeper
slope indicates more organic assemblages (Babin et al. 2003).
Examining Fig. 9, open ocean regions show very little contri-
bution of the “slope flattening” (H3 is low relative to H1),
matching our expectation for organic-dominated particle
assemblages in oligotrophic regions. In some coastal regions,
the HTara

3 coefficients are �50% of HTara
1 þHTara

3 suggesting a
much flatter slope and potentially higher mineral content in
the particle population. Regions where this is observed include
the Amazon River outflow, the Straits of Magellan, the West-
ern Antarctic Peninsula, and near Florian�opolis, Brazil during
a known diatom bloom. In this last case of a diatom bloom,
which is nearly a global max in the HTara

3 = HTara
1 þHTara

3

� �
ratio,

we observe distinct shoulders in the absorption spectra and
speculate the higher value is due to pigments not well cap-
tured by the first four components and the higher H3 is the
best alternative to improve the fit and not necessarily related
to a flatter NAP slope.

Now consider variations in phytoplankton absorption
expressed by HTara

4 = HTara
2 þHTara

4

� �
, where we remind the reader

that the W2 basis function tracks absorption most related to
Chl a, while W4 is interpreted as modulating this to capture
the primary variations in accessory pigments and pigment
packaging effects. Viewing the spatial distribution of
HTara

4 = HTara
2 þHTara

4

� �
we find that the “accessory pigment indi-

cator” HTara
4 is primarily elevated offshore and it is generally

negatively correlated with TaraLH though with substantial
spread. This metric has a global peak near the mouth of the
Congo River where we appear to have considerable CDOM,
low salinity (� 22 PSU), and possibly a set of phytoplankton
pigments not well captured by the W2 basis function.

Searching for outliers
An application that primarily makes use of the fundamen-

tal NMF basis functions is to identify non-water absorption
spectra that are poorly modeled by these functions. In turn,
these would represent outliers, that is, anomalous spectra that
fall off the manifold defined by the large, global ocean
datasets analyzed here. This can be performed on our training
datasets (as done below) or any other hyperspectral samples
with comparable wavelength coverage and sampling.

Figure 10 presents example absorption spectra from L23
and Tara whose NMF models have among the highest abso-
lute and relative root-mean-square errors (RMSEs) when com-
pared with the true spectra. In the evaluation of RMSE, we
have ignored measurements with values less than 0.003 m�1

to minimize the influence of noise. The top panels in Fig. 10
show examples with large absolute RMSE, where the NMF
model deviates by ≈0:01 m�1 at most wavelengths. In the
Tara example, the data show a “shoulder” in the primary
absorption peak at blue wavelengths suggestive of strong
absorption by dinoflagellates or a monospecific bloom. A
smaller feature may also be present in the L23 example.

The lower panels of Fig. 10 have among the highest relative
RMSE in the datasets. The L23 has very weak non-water
absorption and the spectrum is especially noisy. It is possible
this outlier is primarily the result of poor data quality. The
Tara example, meanwhile, is almost entirely modeled by the
1st basis function (W1) yet the spectrum is slightly steeper
yielding the high relative RMSE.

We emphasize that the examples in Fig. 10 have among
the highest RMSEs in the two datasets. Therefore, the rela-
tively small differences between model and data in even these
“outliers” demonstrate the near-universal representation of
absorption provided by the NMF basis functions for the
global ocean. We may anticipate, however, that very rare
events (e.g., algal blooms in coastal waters) will show features
not well captured by the NMF basis functions and notably
higher RMSE values. We will explore this hypothesis in
future work.

Inherent optical property retrievals using NMF basis
functions

Another motivation of this work was to develop a new formal-
ism for the parameterization of absorption spectra at hyper-
spectral resolution in anticipation of the Plankton, Aerosol,
Cloud, ocean Ecosystem (PACE) mission. Plankton,
Aerosol, Cloud, ocean Ecosystem mission is providing the first
global, nearly daily cadence dataset of hyperspectral
remote-sensing reflectances Rrs. A standard practice is to retrieve
from these Rrs data estimates for the absorption and backscat-
tering IOPs of the water (e.g., Werdell et al. 2013). These infer-
ence algorithms for IOP retrievals require a parameterization
of a λð Þ and the backscattering coefficient spectra bb λð Þ (e.g.,
Mobley 2022). Ideally, for the parameterization of IOP
retrievals one adopts an approach that maximizes scientific
description while minimizing the number of free parameters.

We have argued that the mNMF ¼4 NMF decomposition
presented here provides just such a prescription for absorption
spectra. Furthermore, the NMF analysis is easily extended to
include absorption in more turbid conditions, for example,
coastal and/or inland waters. However, we may advocate for
IOP retrievals that one consider a hybrid combination of the
NMF decomposition with a power-law or exponential model
of CDOM and/or detritus as frequently implemented in other

Prochaska and Gray Fundamental modes of ocean color absorption
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algorithms (e.g., Garver and Siegel 1997). Such an approach
will be advantageous if the underlying CDOM/NAP absorption
is truly exponential or very close to it.

Modeling variations in aph with NMF
Now consider an application of the NMF technique to phy-

toplankton absorption alone. As described in “W2 and W4

represent absorption by phytoplankton” section, the NMF
decomposition introduced in this paper includes two basis
functions (W2, W4) that capture variations in phytoplankton
absorption aph. Such variations stem from (i) differences in
the pigment packaging effect; and (ii) the inclusion/omission
of pigments and specific phytoplankton families. These vari-
ances in aph in ocean water were recognized decades ago
(Bricaud and Stramski 1990; Mitchell and Kieper 1988), and
Bricaud et al. (1995) introduced a model to describe the aver-
age variation:

a	ph ¼A λð ÞChl aB λð Þ ð8Þ

with a	ph � aph=Chl a and Chl a the concentration of Chl a
and A and B the wavelength-dependent coefficients. In their
analysis, Bricaud et al. (1995) reported that this nonlinear
model offered the best fit (“highest determination coefficient”)
to the �800 aph spectra obtained on six cruises.

As an alternative to the Bricaud formalism, we performed
an mNMF ¼2 NMF decomposition of the aph absorption spectra
provided in the L23 dataset. The resultant basis functions (ter-
med Wph) are presented in Supporting Information Fig. S2.
The two basis functions closely resemble W2 and W4 derived
from the total, non-water absorption spectra (Fig. 4), which
confirms their primary role in describing aph. Examining Fig.
S2, we identify the 1st basis function Wph

1 as the pigments that
most tightly vary with Chl a, including absorption at
λ≈500�650 nm which resembles prymnesiophytes
(e.g., coccolithophores and other golden-brown flagellates).
Conversely, the 2nd basis function Wph

2 captures pigments
with dominant absorption at blue wavelengths
(e.g., picoplankton) and/or packaging effects.

Fig. 10. The top two panels show spectra from (left) L23 and (right) Tara with among the highest absolute root-mean-square error (RMSE) between
the data (black) and non-negative matrix factorization (NMF) fit (blue). The Tara spectra exhibit significant absorption at λ≈475 nm that may result from
nearly monospecific bloom conditions. This rare feature is not captured by the four NMF basis functions, that is, this is an outlier. The L23 spectrum
exhibits a similar departure, albeit weaker. The bottom two panels show examples for two of the highest relative RMSE. The L23 (bottom left) spectrum is
likely corrupted by noise, that is, measurement error. The Tara (bottom right) spectrum shows NAP absorption that is steeper than the W1 derived from
the Tara dataset, again a notable outlier.

Prochaska and Gray Fundamental modes of ocean color absorption

13

 19395590, 0, D
ow

nloaded from
 https://aslopubs.onlinelibrary.w

iley.com
/doi/10.1002/lno.70098 by T

est, W
iley O

nline L
ibrary on [28/06/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Now compare the two-component NMF model with the
standard Bricaud formalism. Figure S3, meanwhile, presents
two sets of fits to aph: one with the Bricaud function (Eq. 8)
updated by Bricaud et al. (1998), which is a one-parameter fit
(Chl a), and the other using our mNMF ¼2 NMF decomposition
(Figure S3). Clearly, the NMF model yields a better description
of aph at nearly all wavelengths.

Building on the examples shown in Fig. S3 of the Supple-
mental Information, we have evaluated the root-mean-square
error (RMSE) between the aph data of L23 and (i) the two-com-
ponent NMF model for aph and (ii) the Bricaud model. At all
aph 440ð Þ, and therefore Chl a, the NMF models have lower
RMSE (the median ratio is 2.5). Therefore, we find that a rela-
tively simple, two-component additive (i.e., linear) model for
aph provides a more accurate description of these data than
the one-parameter, nonlinear function that is frequently
adopted. It would be straightforward to implement in IOP
retrievals, and the coefficients directly describe variations in
aph absorption.

Limitations
It is also important to recognize the limitations of the NMF

decompositions. While the four basis functions presented here
successfully reproduce the variations in large datasets of
absorption spectra and with greater interpretability than other
statistical techniques (e.g., PCA), the basis functions are
unlikely to map directly to key quantities of interest of the
ocean color community, for example, Chl a concentration.
That is, to the extent that one wishes to estimate the concen-
tration of CDOM or search for absorption from a particular
phytoplankton species, one would need to calibrate the NMF
decompositions against a dataset of such measurements (e.g.,
Chl a, as described in “W2 and W4 represent absorption by
phytoplankton” section).

Indeed, applications that have unique needs (e.g., identify-
ing a specific algal bloom) may benefit from a more mechanis-
tic approach (e.g., Anderson et al. 2011). Such techniques seek
to isolate specific, scientifically desired measures, for example,
phytoplankton size distributions (Zhang et al. 2015), while
ignoring other aspects of the data. Other methods aim to sepa-
rate the total absorption into bulk components, for example,
phytoplankton, CDOM, and NAP (e.g., Lin et al. 2013;
Stramski et al. 2019). Mechanistic approaches have the added
benefit of allowing one to perform analyses with empirical
motivated basis functions, derived from direct measurements
of known constituents from in situ or laboratory samples.
Examples include an exponential function for CDOM or
adopting absorption spectra of specific phytoplankton pig-
ments (e.g., A. P. Chase et al. 2017).

On the other hand, mechanistic models have their own
drawbacks. If designed for a specific application, they may not
be sufficiently generic to describe the full variability in a given
dataset. In this case, techniques like χ2 minimization may
drive solutions to erroneous values and/or generate bias. Or, if

the mechanistic model does have high complexity, it may
exhibit undesirable correlations between fitted parameters.
Indeed, from the results presented here (and see Cael
et al. 2020b; J. X. Prochaska and R. Frouin, submitted), we
contend that any model of non-water absorption can only
recover four (or five) distinct parameters and even these are
apt to show correlations.

Another limitation of the NMF methodology stems from its
core strength. The high interpretability of NMF is due in part
from the fact that it is a linear, additive model. For absorption
spectra, higher values of any given coefficient implies greater
contributions from the components described by its basis
function (e.g., Chl a for the 2nd basis function W2 presented
here). However, for features that have nonlinear variability,
for example, the slope of the near-exponential behavior of
CDOM or detritus, the NMF approach will not optimally cap-
ture the variations. Here, we found differences in the slope for
CDOM was instead primarily accounted for by the 3rd basis
function (W3, “W3 represents the slope of CDOM and/or
detritus absorption” section).

Conclusions
We have presented a NMF of absorption coefficients a λð Þ

drawn from two large, methodologically independent datasets
spanning the coastal and open ocean. The decomposition of
each into four non-negative basis functions describes over
99.9% of the data variance. The basis functions derived from
each dataset have remarkable similarity despite significant dif-
ferences in the methodology and sampling strategies
(e.g., CDOM absorption is absent in the Tara data). We argue,
therefore, that these basis functions reveal the fundamental
modes of ocean color absorption.

We showed that two of the modes describe the amplitude
and slope of CDOM and/or detrital absorption adg, while the
other two provide an additive, linear breakdown of phyto-
plankton absorption aph. We further demonstrate that this aph
decomposition offers a better (lower RMSE) model of the vari-
ance in phytoplankton absorption due to packaging and/or
pigment variations than previous, nonlinear models. Applica-
tions of the NMF method include examining geographical
trends in the features expressed by the basis functions
(e.g., detrital absorption, phytoplankton packaging) and
implementing the functions in IOP retrieval algorithms.

We have also discussed the limitations of the NMF method-
ology, in particular that one must perform additional analysis
to relate the NMF decompositions to specific physical quanti-
ties (e.g., Chl a concentration). On the other hand, with these
NMF basis functions one may perform data-driven exploration
of correlative features (e.g., pigment groupings; Kramer and
Siegel 2019) that may then be related to key aquatic biogeo-
chemical processes.

Future work may develop NMF decompositions for
other bodies of water and/or other non-negative IOPs
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(e.g., backscattering) or apparent optical properties (e.g., reflec-
tances). As with the absorption spectra, we anticipate these
will provide a highly interpretable, compact description of the
primary features in ocean color observations.
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