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INTRODUCTION
Machine learning (ML) methods have 
been extensively applied in ocean 
remote sensing for a variety of tasks: 
chlorophyll a (chl-a) retrievals in com-
plex coastal waters (Pahlevan et  al., 
2020), estimates of three-dimensional 
structure from surface satellite measure-
ments paired with profiling float data 
(Sauzède et  al., 2016), gap filling (Stock 
et al., 2020), retrieval of the diffuse atten-
uation coefficient of downwelling irradi-
ance (Jamet et  al., 2012), and estimates 
of phytoplankton community compo-
sition (El Hourany et  al., 2024). ML is 
also supporting a wide range of ocean 
color remote-sensing goals through the 
classification of in situ plankton imagery 
(Irisson et al., 2022).

Many ML techniques are almost indis-
tinguishable from core statistics con-
cepts, but generally the aims are different. 
ML approaches aim to make predictions 
about a system (e.g.,  chl-a from reflec-
tance spectra, phytoplankton species 
from a microscopy image, or mixed layer 
depth from temperature and location). 
ML methods can also be used to cluster 
data (e.g.,  grouping ocean biogeochem-
ical provinces via temperature, salinity, 
and chl-a measurements or distinguish-
ing phytoplankton patches via high per-
formance liquid chromatography per-
formed on samples). On the other hand, 

statistical approaches aim to make an 
inference about the system (e.g.,  testing 
if El Niño causes phytoplankton blooms 
in the Atlantic, identifying the key driver 
of fish habitat choice; Bzdok et al., 2018). 
While methods from both fields are used 
for both prediction and inference, the 
two disciplines employ different literature 
and language. Though disciplinary divi-
sions exist, much of our discussion below 
applies to both standard ML approaches 
and empirical algorithms typically consid-
ered non-ML (e.g., NASA’s chlorophyll-a 
algorithm; O’Reilly and Werdell, 2019), 
and we hope it will inspire readers to also 
view traditional algorithms with fresh 
eyes and ideas.

Despite the great attention it receives 
and the frequent claims that it is an 
inscrutable black box, ML is simply a 
set of clever mathematical methods. Yet, 
these approaches are not without flaws. 
In supervised learning, for example, ML 
models can produce estimates that defy 
physical plausibility. They can easily 
“memorize” training data and thus overfit 
to patterns in the training data, resulting 
in poor predictions using new data. Model 
evaluation and uncertainty quantification 
are challenging, especially in geoscience 
applications. The assumptions baked into 
many models, conflicting philosophies 
with natural science, and introduction 
of new biases are leading some to debate 

whether ML is good or bad for the natu-
ral sciences (Hogg and Villar, 2024). Most 
serious debates conclude with a quali-
fied yes, and the purpose of this article is 
to help ocean scientists develop intuition 
for using ML methods wisely and in a way 
that benefits the community.

Understanding ML Terminology 
ML is a broad, often vague, sometimes 
misused term for a set of approaches 
that generally use patterns in data to 
find relationships and make predic-
tions. Although ML, deep learning (DL), 
and artificial intelligence (AI) are often 
used interchangeably in popular writing, 
here we follow the common convention 
that defines ML as a subfield of AI that 
uses computational techniques to “train” 
a model to extract patterns from col-
lected data and apply the model to new 
data that the model hasn’t encountered 
before. “Training” simply means optimiz-
ing model coefficients to minimize a cost 
function. For example, the cost function 
could be the root-mean-squared differ-
ence between a model prediction and a 
ground-truth measurement (e.g., of chl-a 
concentration). DL is a subfield of ML 
that uses nonlinear neural networks to 
automatically extract useful features from 
input data. This capability allows the model 
to take in raw data and process it through 
multiple layers, each one transforming the 
data into more abstract and useful repre-
sentations. These more abstract network 
layers can be used to make predictions or 
cluster the input data (Lecun et al., 2015). 
In general, we prefer the term ML (or DL 
when specifically referring to neural net-
work models) because AI is a broader 
term often used for marketing rather than 
technical specificity.

ML can be broadly broken into three 
categories: supervised learning, unsuper-
vised learning, and reinforcement learn-
ing. We focus on the first two. Supervised 
learning is for specific tasks such as regres-
sion or classification, where labeled sam-
ples are used to train the model. Labeled 
samples refer to datasets comprised 
of both input data and corresponding 
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outputs (e.g.,  in trying to estimate chl-a 
concentration from remote sensing, 
labeled samples might consist of reflec-
tance spectra [inputs] and a measured in 
situ chl-a concentration [the outputs]). 
Common supervised algorithms include 
random forests, support vector machines, 
Gaussian processes, and neural networks, 
among many others.

It is important to understand that in 
the case of supervised learning, an ML 
model is simply transforming the input 
variables into the output variables using 
a mapping learned during training. A 
linear regression model with one input 
and one output is a very simple exam-
ple of this transformation. In the case of 
a nearest neighbor algorithm, the model 
outputs the label from the training data 
that is most similar to the new exam-
ple’s set of input variables. In the case 
of a decision tree, the model runs down 
the decision branches it learned until it 
reaches a leaf and outputs a class (classifi-
cation) or continuous value (regression).

Unsupervised learning describes 
methods that do not require labels for 
data samples, such as clustering and 
dimensionality reduction, meaning that 
the input data have no accompanying 
information about the desired model out-
put. Unsupervised algorithms for cluster-
ing include k-means, DBSCAN (density-​
based spatial clustering of applications 
with noise), and Gaussian mixture mod-
els. Unsupervised algorithms for dimen-
sionality reduction include principal 
component analysis (PCA), autoencoder 
neural networks, contrastive learning 
models, and more.

When developing supervised models, 
and particularly deep learning models, a 
train-validation-test framework is nec-
essary: separate labeled subsets train the 
model, the model is validated as hyper-
parameters are tuned (e.g.,  model size, 
learning rate, model structure) and the 
model is re-trained, and then the model’s 
performance is tested on previously 
unseen data. This framework is critical, as 
during model development and tuning, 
one can overfit to the validation data and 

might assume unrealistic performance 
metrics if they are not evaluated on an 
additional test subset. Accurate labels are 
often a major limitation when training 
supervised models, and deciding how to 
split the labels into train-validation-test 
subsets is not trivial, as discussed in the 
section below titled Understanding and 
Evaluating Model Robustness Across 
Time and Space Is Hard. 

Deep neural networks perform both 
feature extraction and prediction. The 
feature extraction aspect is what has 
made neural networks so powerful in 
many tasks, as they can learn complex, 
hierarchical relationships between input 
variables without requiring humans to 
specify those relationships by designing 
expert features (Lecun et  al., 2015). For 
example, a convolutional neural network 
designed to detect human faces learns to 
detect low-level texture and shape fea-
tures, which are combined to detect image 
components such as ears and eyes, which 
are then combined to predict the output 
class. Non-DL ML models still learn rela-
tionships from the input variables but 
learn simpler (often linear) transforma-
tions compared to DL. 

Semi-supervised methods aim to lever-
age both labeled and unlabeled data. For 
example, pseudo-labeling allows a model 
to be trained on the predictions made by 
a model trained on the small amount of 
labeled data, thus expanding the training 
dataset and potentially improving model 
performance. Self-supervised learning is 
a type of unsupervised learning in which 
the model generates its own labels from 
the input data, typically via an initial step, 
such as learning to predict a masked-out 
part of the data, to learn useful represen-
tations before performing the actual task 
on the learned features. Masked auto-
encoders and the growing array of large 
language models (LLMs), such as GPT, 
are types of self-supervised deep learn-
ing approaches. Although the distinc-
tions between categories mentioned 
above can be fuzzy, they can serve as 
a general framework for navigating 
methods (Chollet, 2021).

INTUITION FOR ML IN 
OCEAN SCIENCE
Here we provide a few general heuristics 
and guidance on ML applied to ocean sci-
ence data in the wild.

ML Models Extract Information and 
Interpolate—They Do Not Generate 
“New” Information
Regardless of the degree of complexity, 
ML models cannot extract information 
that is not contained within the input 
data distribution. Although the training 
data may in effect give the model a strong 
prior (set of assumptions) to be combined 
with the input data to make a prediction, 
the user should question whether this is 
sufficient to make informed predictions 
and where the model might miss import-
ant aspects of the system. For exam-
ple, a model that is trained using a data-
set spanning years that don’t contain an 
El Niño year should not be expected to 
accurately model El Niño-related pat-
terns that may be encountered when the 
model is deployed.

Thus, in many situations, an effec-
tive heuristic for ML models is to con-
sider them forms of interpolation. The 
model can be thought of as a function 
f(x) that is estimating y for new previ-
ously unseen x’s based on sets of labeled 
x-y examples. Neural networks are espe-
cially effective because they can trans-
form the raw input data to an embed-
ding space (i.e., a representation or state 
space of reduced dimensionality that 
hopefully consists of semantically mean-
ingful dimensions) where interpolation 
can be done more effectively. This heuris-
tic doesn’t always apply, but it can provide 
some intuition for where ML techniques 
won’t work well.

A related concept that users must 
grasp to properly implement ML tech-
niques is that an ML model doesn’t gen-
erate any “new” information. We can fill 
gaps in cloudy sea surface temperature 
imagery based on similar examples from 
a training set (Agabin and Prochaska, 
2023), but these estimated values were 
not truly part of the original signal. As 
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an analogy, the model has learned a prior 
that it uses in combination with the orig-
inal incomplete imagery to predict the 
likely measurement in the location of the 
gap. Yet, if there are no similar examples 
in the training data, this gap filling could 
be error prone. Because it is challenging 
to capture the full variability of the ocean 
in our training data, models become 

unconstrained when they encounter sce-
narios outside the training and evalu-
ation data (a fundamental issue of ML 
models discussed later in Understanding 
and Evaluating Model Robustness Across 
Time and Space Is Hard). This can be 
troublesome as it is often difficult to assess 
whether the input data are outside of the 
distribution of the train-validate-test 
suite and therefore more uncertain.

Related cases where caution must be 
exercised are when using ML to predict 
observations at a higher spatial, tempo-
ral, or spectral resolution than the orig-
inal data. A model predicting 50 hyper-
spectral bands from 10 multispectral 
bands is not generating new, independent 
data. In both cases, these models are mak-
ing predictions based on all the previous 
data they’ve been trained on, that is, their 
priors. Applying this method implies that 
all variations in the upscaled data can be 
predicted by the lower resolution data. 
However, this assumption could be flawed 
in an ocean system where dynamic pro-
cesses and fine-scale variations may not 
be captured adequately by lower reso-
lution data. For example, predicting the 
remote sensing reflectance (Rrs) at 550 nm 
from Rrs(520 nm) and Rrs(580 nm) could 
be disconnected from reality given the 

sharp absorption peak of phycoeryth-
rin (an accessory pigment in cyano-
bacteria and other phytoplankton) in the 
ocean at 550 nm that may not be con-
nected to changes at 520 nm and 580 nm. 
Incorporating seasonality, temperature, 
and location as inputs may help the model 
develop more accurate predictions, but is 
not a mechanistic or causal linkage.

In the ocean sciences, particularly in 
ocean color remote sensing, the data can 
be fairly low dimensional (Cael et  al., 
2023). Compared to a natural image 
(i.e.,  a photo from your phone), which 
can have an immense amount of spa-
tial information, ocean color spectra 
have only a few dimensions (i.e., spectral 
bands) and may not sustain the multiple 
levels of representation and abstraction 
needed to generate robust relationships 
in a large neural network in the same way 
a natural image can. Although the specific 
number of parameters we can invert from 
ocean color is currently under debate, we 
should not heedlessly use ML to squeeze 
more information out of our data than 
fundamentally exists. 

In the case of ocean color inversion 
models, this suggests we might not want 
to invest effort in fine-tuning models 
to estimate a parameter that is not well 
constrained by Rrs alone or Rrs deriv-
atives such as band ratios. Instead, we 
should explore moving beyond current 
per-pixel approaches to take advantage 
of spatial (Gray et al., 2024) and tempo-
ral (Jönsson et al., 2023) patterns in Rrs, 
combine sensing modalities such as lidar-​
derived backscattering to inform and 
constrain our inversions (Bisson et  al., 

2023), use additional and related obser-
vations from space such as sea surface 
temperature (Chase et  al., 2022), and 
invest resources in understanding the 
information encoded in new modali-
ties such as degree of polarization pro-
vided by the recently launched Plankton, 
Aerosol, Cloud, ocean Ecosystem (PACE) 
satellite mission.

Understanding and Evaluating 
Model Robustness Across Time 
and Space Is Hard
A key challenge in supervised mod-
els is overfitting, where evaluation met-
rics are good for training data but not 
for new data, which results in a model 
unable to generalize to new data col-
lected under slightly different condi-
tions. This can stem from limited train-
ing data, noisy training data without 
underlying patterns, or an overly com-
plex model that is able to “memorize” the 
noise in the training data—all of which 
lead to non-​generalization. Evaluating 
model generalizability can be challeng-
ing though, particularly in highly vari-
able geoscience domains like the ocean. 
When we estimate an ML model’s per-
formance on a set of test samples, we 
assume that our test samples are (1) inde-
pendent from the training samples, and 
(2) representative of the data popula-
tion that the model will be applied to at 
“deployment” or inference time. It is crit-
ical to design train-​validation-​test dataset 
splits and evaluation experiments to sim-
ulate one’s intended use case (Rolf, 2023). 
Note that these assumptions are the same 
when developing an explicit empirical 
model (i.e.,  the derivation of coefficients 
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linking inputs to outputs through a fit to 
labeled data). 

A model should be evaluated for 
robustness based on the possible con-
ditions in which it might be used (Rolf, 
2023). If a model is only attempting to 
predict chl-a and CDOM (colored dis-
solved organic matter) for a specific 
estuary, then it does not need to assess 
robustness in the middle of the Sargasso 
Sea, but rather might be trained to 
ensure robustness across all seasons and 
after anomalous weather events in the 
estuary of interest.

There are three particularly important 
considerations in terms of model evalua-
tion and data subset design: (1) distribu-
tion shift, (2) spatial and temporal auto-
correlation, and (3) sampling strategies.

DISTRIBUTION SHIFT
Distribution shift (i.e., changes in the dis-
tribution of data) is rampant in ocean 
remote sensing and remote sensing sci-
ence broadly (Taori et  al., 2020). These 
shifts can be subtle, and ML models are 
known to be brittle to them. Covariate 
shift occurs when the distribution of the 
input data changes, such as after a sensor 
calibration update or due to different rela-
tionships between temperature and eco-
system properties as the climate changes. 
Label shift, on the other hand, involves 
changes to the label distribution, such 
as when the proportion of phytoplank-
ton species varies across seasons and 
locations. Relationships that the model 
learns to be robust in summer in a certain 
region may break down in winter, lead-
ing to decreased model performance and 
reliability. As a simple example, a model 
trained to detect oyster reefs in remotely 
sensed imagery was highly effective in the 
spring, but during the fall when the salt 
marsh was senescent and lighting con-
ditions had changed, the model accu-
racy dropped dramatically (Ridge et  al., 
2020). If a model is used to make predic-
tions for data that are distributed differ-
ently than those in training samples, the 
model will likely do poorly because its 
underlying assumptions have changed. 

Understanding if a new data distribution 
has shifted significantly can be challeng-
ing, particularly for multidimensional 
data. Practitioners should consider sea-
sonal, geographic, ecological, and cli-
matic factors that may drive distribution 
shifts, and compare training data and 
data during model deployment to quan-
tify possible shifts. 

SPATIAL AND TEMPORAL 
AUTOCORRELATION
Spatial and temporal autocorrelation 
occurs when observations that are close 
together in space or time are more similar 
to each other than to those taken further 
apart. This autocorrelation is helpful for 
learning predictive models and interpo-
lating data. However, if this autocorrela-
tion is not accounted for in the dataset 
splits and evaluation protocol, there can 
be information leakage between train-
ing and test sets, causing overestimation 
of model performance because the test 
data are not independent from the train-
ing data (Figure 1). As an example, half 
of the irradiance data from ocean profil-
ing floats comes from the Mediterranean 
(Begouen Demeaux and Boss, 2022), and 
if these data are simply split into a ran-
dom training-validation-test subsets, the 
evaluation metrics could be substantially 
inflated by the autocorrelation in the data.

If the intended use case of a model 
is to make predictions for observations 
acquired in a region or time period 
that was not present in training data, 
then train-validate-test splits should be 
designed to account for spatial or tempo-
ral autocorrelation (Rolf et al., 2024). ML 
evaluation protocols have been designed 
for this challenge in geospatial data such 
as spatial or temporal cross validation, 
checkerboard evaluation, and block or 
buffered cross validation (Rolf, 2023). A 
good design example would be: if the goal 
is temporal generalization, given a data-
set of observations from 2010 to 2020, 
assign data from 2010 to 2015 to train-
ing, 2016 to 2018 to validation, and 2019 
to 2020 to test (or better yet, do temporal 
cross validation). A bad design example 

would be: randomly split the data into 
train-​validate-​test following a standard 
80/10/10% split in which data from all 
years can be in all subsets.

SAMPLING STRATEGIES
The sampling strategies used to collect 
the labels that will comprise the test data-
set are important to consider when try-
ing to understand whether a test set is 
representative of a target population at 
model deployment time. Many in situ 
oceanographic datasets are collected 
using opportunistic sampling and are 
clustered in space and time (e.g.,  close 
to shore, rarely during winter storms). 
This results in a biased representa-
tion of the environment, which affects 
the accuracy estimation of the model, 
especially if spatial/temporal autocor-
relation is not accounted for in evalu-
ation. Begouen Demeaux et  al. (2024) 
showed that a model estimating the dif-
fuse attenuation coefficient trained on a 
large Biogeochemical Argo float data-
set was still biased because it did not 
represent the real distribution of val-
ues in the ocean. Even if a probability 
sample (e.g.,  random uniform) is con-
structed to collect test data, sample size 
can greatly impact the uncertainty of the 
metric because it may miss rare or clus-
tered patterns. For example, if a cer-
tain phytoplankton is rare, it may never 
appear in training data yet could still be 
encountered when the model is deployed 
(Nardelli et al., 2022). Thus, it is import-
ant to consider different sampling strat-
egies and estimate standard errors/​
confidence intervals of performance met-
rics when evaluating predicted products 
(Stehman and Foody, 2019).

ML models have no mechanistic rep-
resentation of the ocean system. They 
are comprised of statistical relationships 
built using only the training data they 
have received. Given the many influences 
on the physical and biological states of 
the ocean, it can be hard to ensure proper 
training data across all relevant dimen-
sions and conditions, particularly in 
higher dimensional spaces. Evaluating 
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spatial and temporal generalizability and 
including anomaly detection tests can 
help resolve these issues.

Hypotheses and 
Physical Mechanisms Are 
Still Important in ML
Conducting data-driven science and 
exploration does not mean disregard-
ing established knowledge of a system. 

Prediction should be combined with 
inference—understanding how the sys-
tem works and making estimates either 
about future state or inverting param-
eters of interest. For example, in the 
western Atlantic, climatological wind 
speed may be connected to chl-a con-
centration through shared relationships 
with insolation and wind-driven mix-
ing. However, this climatological wind 

and chl-a correlation does not mean 
that daily wind speed would be a good 
predictor of chl-a concentration in any 
causal way. As always, correlation does 
not imply causation, and the difference 
should be weighed when choosing model 
inputs and outputs.

While explorations of the entire 
dataset (e.g.,  via unsupervised meth-
ods for dimensionality reduction and 

FIGURE 1. Using NOMAD (NASA bio-Optical Marine Algorithm Dataset), accuracy is achieved in predicting chl-a when a random forest model is trained 
on data from the North Pacific Ocean (black dots with white edges on the map) and then used for predictions based on data collected across a wide 
range of other locations (black dots). The model works well with data from the North Pacific and the South Pacific but has much lower and more vari-
able accuracy for the North Atlantic and the Gulf of Mexico.
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visualization) and testing explanatory 
power via ML models may help form 
hypotheses, some understanding of the 
connections between the inputs and out-
puts of a model is typically warranted. 
ML can of course be used to gain insight 
into unexpected physical processes and 
guide the creation of effective physi-
cal relationships, but investigations into 

causation using more formal causal infer-
ence frameworks (i.e., Runge et al., 2019) 
are likely to both benefit the scientific 
process and guide model development 
through more informed model predic-
tors and relationships.

Physically informed models with one 
to two expert-designed features may be 
much more generalizable and well con-
strained than ML models working on the 
raw data. In recent work predicting the 
diffuse attenuation coefficient from satel-
lite ocean color, a simple analytical model 
developed from radiative transfer theory 
was shown to have less bias in an open-
ocean environment than in an empirical 
approach. The empirical model, despite 
being tuned using a large global train-
ing dataset, had limited open ocean data, 
leading to greater bias in those regions 
(Begouen Demeaux et al., 2024).

Caveats of Complexity in 
an Uncertain Ocean
ML models are adept at modeling non-
linear transformations of input to output 
data, but we must consider the trade-offs 
between complexity and generalization. 
For example, is the community, and our 
own insight into the Earth system, bet-
ter served by a complex ML model with 

high performance or a marginally lower 
scoring but simpler model, or potentially 
a much lower scoring but more general-
izable mechanistic model? The answer 
will be different based on each project’s 
goals but should be considered. Here, we 
address two concerns in model develop-
ment and deployment related to model 
complexity: uncertainty and anomalies.

UNCERTAINTIES 
Incorporating uncertainty into model 
development and propagating uncer-
tainty through to model predictions is 
critical for meaningful output (Elipot 
et  al., 2022) as well as for performance 
evaluation. During model development, 
the uncertainty from each step must be 
understood and, during model use, the 
uncertainty from the input data must be 
propagated properly through the process. 

Often during development, models 
are compared on the basis of accuracy 
(e.g.,  root mean square error, RMSE) 
without regard for uncertainty in input 
data (e.g., Rrs), label values (e.g., measured 
chl-a concentration), or—​importantly 
for small datasets—the uncertainty 
injected in the training/​testing data split. 
To objectively and robustly evaluate a 
model, all relevant uncertainties must 
be considered.

As a case study, consider three mod-
els of varying complexity for predicting 
chl-a from Rrs: a multiple linear regres-
sion, a random forest, and a multi-layer 
perceptron (MLP, a simple neural net-
work) using the same data as in Figure 1. 
For a given train/test split and assuming 
all input and label measurements are 
exact, a specific model may appear more 

accurate (Figure 2, top panel). Yet, if we 
take a Monte Carlo approach and ran-
domly shuffle the test/train splits and 
account for input and label uncertainty, it 
is not so clear (Figure 2, bottom panel). 
The uncertainty in the RMSE in this case 
is primarily driven by stochasticity in the 
train/test splits rather than in the mea-
surement technique, which likely has 

to do with poor generalizability across 
regions or poor representation of water 
types. Striving to generate the best global 
algorithm might encourage collection or 
collation of more data rather than invest-
ing in more complex algorithm develop-
ment for the existing data. This could also 
encourage different sampling approaches, 
such as more profiling floats vs. vessel-​
based sampling. The ocean science com-
munity should follow the practice of the 
ML research community to report results 
using the mean and standard deviation 
over multiple random seeds and stratify-
ing the test data over seasons and regions 
as described in Spatial and Temporal 
Autocorrelation below.

ANOMALIES
Much of what we care about in the 
ocean, particularly in the context of cli-
mate change, involves anomalies and 
data points that lie outside the distribu-
tion of our training data. However, if not 
trained appropriately, ML models trained 
to predict phytoplankton types or harm-
ful algal blooms may fail to detect these 
novel, significant events. As an exam-
ple, imagine a model for predicting phy-
toplankton species from microscopy 
trained on all past images in a region. 

 “If a model is not properly evaluated, justified, and its limitations 

understood, releasing it into the wild or drawing conclusions from its 

predictions may in fact do a disservice to the community…”
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In the following year, a new phytoplank-
ton species appears in the region, so that 
the model will never predict the correct 
class because it isn’t trained on this spe-
cies. There are effective conventional sta-
tistical and ML approaches for anom-
aly detection (e.g., Isolation Forest, Local 
Outlier Factor), but they must be inten-
tionally employed. The cost function of 
many models can also be modified to pri-
oritize rare examples. 

Dealing appropriately with rare exam-
ples and anomalies is particularly rel-
evant given the long tail of ecological 
datasets (Van Horn and Perona, 2017), 
especially for phytoplankton (Nardelli 
et al., 2022). “Long tail” here describes the 
long-skewed distribution of rare species, 
rare spectra, rare combinations of sedi-
ment and minerals and phytoplankton 
types, all aspects that make traditional 
classification approaches challenging. 
These situations, where it is understood 
the training data cannot encompass all 
possible types encountered during model 
deployment, are sometimes called “open 
set” classification problems, and there is 
a rich literature not well explored in the 
ocean sciences (Geng et al., 2021).”

In sum, if a model is not properly eval-
uated, justified, and its limitations under-
stood, releasing it into the wild or draw-
ing conclusions from its predictions may 
in fact do a disservice to the community 
both through the opportunity cost of that 
time and effort and through adding a 
potentially poor model to an already clut-
tered landscape, obscuring better solu-
tions and leading to poor inferences.

THE PROMISE
Despite the caveats and complexities 
above, ML techniques have the poten-
tial to benefit the ocean sciences and 
the ocean remote sensing community. 
We strongly suggest that robustly eval-
uated supervised models, if proven to 
excel beyond existing baselines, paired 
with outlier detection to ensure infer-
ence is done within the testing distri-
bution, can help advance many clas-
sification and regression problems. 

When simple or mechanistic models 
fail to capture complex relationships, it 
becomes useful to leverage the excep-
tional capabilities of ML.

A broad vision for machine learning 
in geosciences can be found in Tuia et al. 
(2021), who advocate for improved rea-
soning, multi-modal approaches, con-
sistency with domain-specific knowl-
edge (e.g., following physical equations), 
enhanced interpretability, and learning 

causal relationships. Rolf et  al. (2024) 
present arguments and suggest path-
ways for machine learning research-
ers to consider satellite remote sens-
ing data as a unique data modality for 
machine learning and to develop tech-
niques that are uniquely suited to these 
data needs. Here, we lay out a vision for 
a range of other creative and currently 
underexplored applications specific to 
ocean remote sensing.

FIGURE 2. An example of three different algorithms of varying complexity trained 
to predict chl-a from remote sensing reflectance. (top panel) The dashed lines 
represent a regression between model predictions and measured in situ chl-a 
values and show the lowest root-mean-square-error (RMSE) is from the random 
forest model. (bottom panel) Distributions of RMSE for 100 different model train-
ing cycles accounting for the uncertainty in the radiometric measurement and the 
chl-a measurement by picking values from the distribution of expected values 
and randomly shuffling the training and testing data. When accounting for the full 
uncertainty, we cannot distinguish between the random forest and the multi-layer 
perceptron (MLP), yet some individual runs, such as in the top panel, may make it 
appear as if there is a substantial difference. 
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A Case Study on Unsupervised 
Exploration and Anomaly Detection
We illustrate the advantages of unsuper-
vised learning and anomaly detection for 
dataset exploration by investigating an Rrs 
image from the recently launched PACE 
mission (Figure 3). This small subset of 
a single image contains >2,000,000 pixels, 
and each pixel represents 184 measure-
ments across the spectrum from 350 nm 
to 700 nm. There is a large degree of spec-
tral variability in this region ranging from 
open ocean to estuarine (Figure 3b). 
We map these spectra to five spatially 
coherent clusters using k-means cluster-
ing (Figure 3c,d). Viewing the data in a 
dimensionality reduced space via PCA, 
it is clear there is continuity between 
the clusters rather than their being dis-
crete groups. This is often the case with 
ocean phenomena, and it warrants spe-
cific approaches. Using the anomaly 
detection algorithm LocalOutlierFactor 
from the scikit-learn library, we further 
investigate deviations from these clusters 
that may stem from atmospheric effects, 
high surface glint, or locally rare water 
column constituents. Simple ML-aided 
data exploration at the onset of a project 
can help users gain intuition for the data-
set and develop informed hypotheses. 
See https://github.com/patrickcgray/ml_
in_ocean_rs/blob/main/clustering_pace.
ipynb for a step-by-step walk through.

Self-Supervised Learning
The labeled data needed for supervised 
learning and evaluation is scarce and spa-
tially clustered in ocean remote sensing. 
However, unlabeled data are plentiful—
satellites acquire observations uniformly 
everywhere in the world at regular time 
intervals. Self-supervised learning (SSL) 
uses unlabeled data to construct a pre-
text task (such as masked reconstruc-
tion) for conducting supervised learn-
ing. Using the SSL paradigm, models 
can be pre-trained using extremely large 
unlabeled ocean remote sensing datasets 
that could offer significant benefits for 
improving learning efficiency and accu-
racy in downstream tasks. Effectively 

leveraging SSL in ocean remote sensing 
requires investigating suitable pre-text 
tasks, including—but going beyond—
masked reconstruction (Agabin and 
Prochaska, 2023). Future work should 
also investigate new approaches to 
model architectures, positional encod-
ers, pre-training data curation, and other 
key elements of SSL methods that are 
uniquely suited to learning useful pat-
terns in ocean remote sensing data. To 
help guide future work, the ocean remote 
sensing community should define which 
downstream tasks are most appropri-
ate and informative for evaluating self-​
supervised “foundation” models (e.g., by 
curating a suite of tasks like the terrestrial 
GeoBench; Lacoste et al., 2023). 

Hybrid Physical Models
An emerging application of deep learn-
ing is to couple an ML model (e.g., a neu-
ral network) to a traditional numerical 
model of a physical process (e.g., climate 
modeling), termed a “hybrid physi-
cal model.” The core concept involves 
replacing complex, typically nonlinear 
processes in a mechanistic model with 
an ML approximator to enhance reso-
lution or speed up the process. The ML 
emulator is trained on a set of expen-
sive, high-resolution model runs repre-
senting the processes to be approximated. 
This has been used in ocean color remote 
sensing to speed up the retrieval of ocean 
properties. In one case, a neural network 
replaced the forward radiative transfer 
model and was able to be run 103 times 
faster than the physical model in an iter-
ative optimization approach (Gao et  al., 
2021). This approach bears the risk, how-
ever, of generalizing poorly, for exam-
ple, generating highly erroneous results if 
presented with input parameters that lie 
far outside the training set. Furthermore, 
neural network-based emulators gener-
ally lack the physical intuition that one 
may implement with a heuristic algo-
rithm. See Reichstein et al. (2019) for an 
overview of both opportunities and chal-
lenges for ML in Earth science and a spe-
cific focus on hybrid physical-DL models.

Bayesian Models
There are significant opportunities for 
the oceanographic community to further 
leverage Bayesian techniques combined 
with ML that have been applied exten-
sively elsewhere. Most bio-optical inver-
sion algorithms employ traditional linear 
regression algorithms, ignore measure-
ment error, and don’t account for highly 
correlated uncertainties and retrieval tar-
gets. The Bayesian approach forces explicit 
identification and definition of priors that 
are typically present but unexplicit in fre-
quentist approaches. In cases where a 
forward model can relate ocean proper-
ties to primary observables (e.g., a radia-
tive transfer code linking absorption and 
backscattering to radiance measured by 
satellite), Bayesian inference techniques 
should be explored (e.g.,  Monte Carlo 
Markov chains, nested sampling). While 
computationally expensive, such meth-
ods already exist for atmospheric correc-
tions and are under active development 
for inherent optical property retrievals 
(Prochaska and Frouin, 2024). Bayesian 
approaches have also shown promise in 
improving predictions for data under-
going distribution shifts (Seligmann 
et al., 2023), and there are mature tools for 
integrating deep learning with Bayesian 
methods (e.g., Tensorflow-Probability).

Data Manifolds
The apparent successes of DL in remote 
sensing indicates these models can effec-
tively extract patterns from input data. 
Indeed, the lower dimensional data man-
ifold embedding that is generated could 
become a basic object from which sci-
entific inquiry is performed (Meilă and 
Zhang, 2024). Applications like these are 
already common in remote sensing stud-
ies on land (e.g., Tseng et al., 2023) and 
could translate well to ocean studies. In 
the ocean, physics-informed manifolds 
extract trends and non-correlations from 
complex datasets and can indicate regions 
of distinct dynamics (Sonnewald et  al., 
2019). These manifolds enable the inves-
tigation of physically similar but complex 
scenes and the classification or regression 

https://github.com/patrickcgray/ml_in_ocean_rs/blob/main/clustering_pace.ipynb
https://github.com/patrickcgray/ml_in_ocean_rs/blob/main/clustering_pace.ipynb
https://github.com/patrickcgray/ml_in_ocean_rs/blob/main/clustering_pace.ipynb
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FIGURE 3. A Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite mission image visualized as (a) Rrs(442 nm), (b) 200 randomly selected spec-
tra showing the variability in the study region, (c) clusters via k-means shown geographically, and (d) the average spectra from each cluster. The bottom 
three graphs show data visualized by (e) the first two principal components colored by cluster, (f) LocalOutlierFactor anomaly score where the darker 
colors indicate more likely to be anomalous, and (g) highly anomalous spectra shown along with the five main clusters for reference.
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of dominant physical processes. We fore-
see an increasing emergence of the con-
struction of data manifolds and anal-
ysis as the fundamental workflow of 
scientific discovery.

Data Integration
Another promising application of ML for 
ocean research is in facilitating the utili-
zation of the large, disparate datasets col-
lected from a variety of in situ platforms 
to complement remote-sensing data and 
enable algorithm development. While in 
situ data are abundantly and freely avail-
able, usage is hindered by the fact that 
data integration processes are currently 
performed manually, a tedious and gruel-
ing task that is not feasible for many large-
scale studies. The improved ability of ML 
tools to extract knowledge from text and 
to use domain ontologies to integrate 
and align data opens the way for imple-
menting tools for automating the ocean 
data integration process (e.g.,  the Ocean 
Data Integration Initiative, https://odini.
net/; Sagi et  al., 2020). Implementation 
of ML-based data integration tools will 
also help mitigate a primary challenge in 
remote sensing algorithm development—
limited in situ data. For example, inte-
grating all available flow cytometry data-
sets and pairing them with satellite ocean 
color data would allow more robust ML 
models to be developed for predicting 
phytoplankton type.

Spatial Features
While spatial (and temporal) features are 
not typically used in ocean remote sens-
ing (e.g.,  ocean color where per-pixel 
per-image inversions are the norm), 
extracting features from spatial and tem-
poral data and incorporating them into 
our inversions or using them as a new 
data stream may be a promising approach 
(Gray et al., 2024). This is one area where 
ML, and specifically DL, can be easily 
employed (e.g., convolutional neural net-
works or vision transformers). For ocean 
color research, we advocate beginning 
with simple, unsupervised algorithms 
to perform data exploration and then 

developing custom applications to meet 
scientific or community needs. Similar 
research is being pursued on sea surface 
temperature (e.g., Prochaska et al., 2023) 
and other parameters within the ocean 
remote-sensing community.

CONCLUSION
Our hope is to motivate the community 
to question the advantages and disadvan-
tages of employing ML models to assist 
in answering geophysical questions. We 
emphasize caution when using super-
vised models in regions where there is 
limited confidence in the spatiotemporal 
comprehensiveness of the labeled data or 
in cases where anomalies are of interest. 
The nonlinear transformations done by 
many ML models are useful when playing 
to their strengths but can also hide trends 
and novel data. They should be used as 
specialized tools, not the initial hammers 
applied to every question. We emphasize 
that researchers should consider what 
they hope to learn before using ML tools. 
Is your objective the highest model pre-
diction accuracy on a study region well 
defined by available training data? Do 
you seek broad Earth system understand-
ing? Are you exploring unknown phe-
nomena that don’t fit into a supervised 
model paradigm?

We suggest that in a changing world 
and a complex ocean system—with many 
degrees of freedom and nonlinear feed-
backs—and with a lack of in situ data 
spanning all states of the ocean, a sim-
pler and more physical model is gener-
ally better. Until collection of in situ data 
transitions beyond “grossly inadequate 
expeditionary sampling” and we can 
sample the ocean in all its states, inter-
polation methods are likely to err some-
where at some time, and we will miss key 
processes (Munk, 2002). There are many 
good reasons for using an ML model, but 
they must apply in each case where it is 
deployed and be worth the complexity, 
time, and effort.

We are likely to cross climate thresh-
olds and ocean ecosystem tipping 
points in the next decade. The trainees 

of today will be the leading scientists as 
we pass these thresholds, as Earth expe-
riences peak radiative forcing, includ-
ing some of the most dramatic climate 
impacts. Improper usage of ML models 
could obscure these shifts and our under-
standing of them—or with proper use, 
they could help us understand, predict, 
and manage them.
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