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S T U D E N T P A P E R

A Convolutional Neural Network to Classify
Phytoplankton Images Along the West
Antarctic Peninsula

A U T H O R S
Schuyler C. Nardelli
Rutgers University Center for Ocean
Observing Leadership

Patrick C. Gray
Duke University Marine Lab

Oscar Schofield
Rutgers University Center for Ocean
Observing Leadership
A B S T R A C T

High-resolution optical imaging systems are quickly becoming universal tools

to characterize and quantify microbial diversity in marine ecosystems. Automated
classification systems such as convolutional neural networks (CNNs) are often
developed to identify species within the immense number of images (e.g., mil-
lions per month) collected. The goal of our study was to develop a CNN to classify
phytoplankton images collected with an Imaging FlowCytobot for the Palmer Ant-
arctica Long-Term Ecological Research project. A relatively small CNN (~2 million
parameters) was developed and trained using a subset of manually identified im-
ages, resulting in an overall test accuracy, recall, and f1-score of 93.8, 93.7, and
93.7%, respectively, on a balanced dataset. However, the f1-score dropped to
46.5% when tested on a dataset of 10,269 new images drawn from the natural
environment without balancing classes. This decrease is likely due to highly im-
balanced class distributions dominated by smaller, less differentiable cells, high
intraclass variance, and interclass morphological similarities of cells in naturally
occurring phytoplankton assemblages. As a case study to illustrate the value of
the model, it was used to predict taxonomic classifications (ranging from genus
to class) of phytoplankton at Palmer Station, Antarctica, from late austral spring to
early autumn in 2017–2018 and 2018–2019. The CNN was generally able to iden-
tify important seasonal dynamics such as the shift from large centric diatoms to
small pennate diatoms in both years, which is thought to be driven by increases in
glacial meltwater from January to March. This shift in particle size distribution has
significant implications for the ecology and biogeochemistry of these waters.
Moving forward, we hope to further increase the accuracy of our model to better
characterize coastal phytoplankton communities threatened by rapidly changing
environmental conditions.
Keywords: machine learning, convolutional neural network, polar science, phyto-
plankton ecology, West Antarctic Peninsula
chemical gradients in nature span-

ning small scale turbulent mixing
Introduction
Characterizing the concentration
and diversity of marine phytoplank-
ton over relevant ecological temporal
and spatial scales has long been the
holy grail for aquatic scientists and
water quality coastal managers. Diver-
sity and biomass play a central role in
aquatic biogeochemical cycles, struc-
turing marine food webs, and driving
water quality. The difficulty has
been the extremely high diversity
of species and morphologies found
in the phytoplankton, which re-
flects a myriad of physical and

to mesoscale circulation processes
(Hutchinson, 1961). The develop-
ment of imaging technolog ie s
(Olson & Sosik, 2007) provides
for the first time the ability to mea-
sure phytoplankton numbers, diver-
sity, and size. These imaging tools
offer the potential to document how
ocean ecosystems respond to changing
environmental conditions.
The West Antarctic Peninsula
(WAP) is a highly productive marine
ecosystem characterized by large sum-
mer phytoplankton blooms that sup-
port extensive krill and top predator
populations (Ducklow et al., 2013).
Rapid warming and melting along
the WAP have impacted the phyto-
plankton community, which has im-
plications for the entire food web.
September/Octo
Midsummer phytoplankton biomass
has significantly decreased in the
northern WAP, associated with a
shift from large-celled diatoms to
smaller-celled cryptophytes and
mixed flagellates (Montes-Hugo
et al., 2009). This shift is concurrent
with an increase in low salinity melt-
water (Mendes et al., 2013; Moline
et al., 2004; Schofield et al., 2017).
ber 2022 Volume 56 Number 5 45



The increased spatial coverage of low-
salinity surface waters associated with
continued glacial and sea ice melt is
predicted to increase the prevalence
of smaller-celled phytoplankton com-
munities along the WAP, with impor-
tant implicat ions for food web
structure and trophic energy transfer
efficiency (Sailley et al., 2013).

The Palmer Antarctica Long-
Term Ecological Research project
(PAL-LTER; established in 1991) in-
vestigates how changes in sea ice
along the WAP impact biogeochemis-
try and pelagic ecosystem dynamics.
Phytoplankton taxonomy has previ-
ously been characterized using High
Performance Liquid Chromatography
(HPLC) methods, which use marker
pigments to quantify the proportions
of the different phytoplankton groups
that make up the overall biomass.
Molecular analysis such as 16/18S
metabarcoding can also be extremely
informative and has been used with
great success on the WAP (Trefault
et al., 2021). However, HPLC lacks
more detailed taxonomic resolution
(e.g., to genus or species), and both
HPLC and molecular analyses lack
cell size information that is critical
to understanding how warming and
melting impacts phytoplankton com-
munities along the WAP. Molecular
analyses also require a substantial
time investment and cost. Microscopy
has been sporadically used in PAL-
LTER research (Garibotti et al.,
2005), but is extremely time consum-
ing and requires taxonomic experts to
manually identify every cell.

To fill this knowledge gap, the
PAL-LTER aquired an Imaging
FlowCytobot in 2017 (IFCB; McLane
Labs, Falmouth, MA, USA). The
IFCB is an automated imaging-in-flow
submersible cytometer that uses a
combination of camera and flow cyto-
46 Marine Technology Society Journa
metric technology to collect images
(see examples in Figure 1) and measure
chlorophyll fluorescence and scattered
light for each particle (~10–150 μm)
in a 5-ml water sample (Olson &
Sosik, 2007). These images can be an-
alyzed to determine cell size parame-
ters, and sorted taxonomically to the
genus or species level, thus providing
more detailed organismal information
than HPLC or molecular methods.

However, the IFCB can generate
more than 10,000 high-quality im-
ages every hour, which can become
an immense amount of data over the
duration of a research cruise or field
season. This volume of data makes
l

manual image identification impracti-
cal; therefore, these imaging platforms
are often complemented by automat-
ed detection systems that allow for
rapid and precise classification of
plankton communities. Currently,
there are two typical machine learning
approaches for operational IFCB
image classification: (1) a support vec-
tor machine (SVM) based on a fea-
ture selection algorithm (88% overall
accuracy with 22 classes; Sosik &
Olson, 2007), and (2) random forest
(RF) algorithms (~70% overall accu-
racy depending on the model and
number of classes; e.g., Picheral
et al., 2017). Both approaches are
FIGURE 1

Examples of IFCB images: (A) centric diatom chain; (B) Cylindrotheca (pennate diatom); (C)
cryptophyte; (D) ciliate (microzooplankton); (E) Phaeocystis colony (haptophyte); (F) unidenti-
fied mixed flagellate; (G) Eucampia antarctica chain (centric diatom); (H) detritus; (I) Licmophora
(pennate diatom); (J) dinoflagellate, likely Gyrodinium; (K) Chaetoceros chain (centric diatom).
Scale bar is 10 μm.



not run on the imagery itself, but
rather a set of manually-processed
image features such as image texture,
cell volume, and gradients.

Striving to increase accuracy be-
yond the current state of the art and
following advancements in the field of
computer vision (LeCun et al., 2015),
the IFCB community is now transi-
tioning to deep learning methods, in-
c l ud ing convo lu t i ona l n eu r a l
networks (CNNs), due to their im-
proved accuracy in image classifica-
tion across a broad variety of fields
and data domains compared to con-
ventional methods (e.g., RF, SVM).
Though often targeting larger zoo-
plankton, there has already been a
good deal of success in applying
CNNs to planktonic imaging data
(Cheng et al., 2019; Orenstein &
Beijbom, 2017). There has been
mixed success for IFCB data specifi-
cally, often challenged by the long-
tailed distribution of phytoplankton
in the natural environment and the
number of cells hovering on the
edge of the system resolution, but
typically CNNs increase accuracy
over conventional methods (Lee et al.,
2016). CNNs extract features di-
rectly from images. Starting with
raw imagery and class labels, the net-
work learns semantically meaningful
features as it trains on the data. In
theory, extracted features correspond
to components of the images relevant
to distinguishing between classes,
which makes these models highly ac-
curate and well suited for image clas-
sification tasks.

Since 2017, the PAL-LTER has
collected over 10 million images span-
ning four field seasons. The goals of
our study were (1) to develop a
CNN to sort WAP phytoplankton im-
ages into taxonomic groups and (2) to
apply the CNN to two PAL-LTER
field seasons of IFCB data to demon-
strate its utility for characterizing eco-
logical processes along the WAP. A
CNN will allow for taxonomic classifi-
cation of an entire season of collected
phytoplankton data in less than a day
(~3 million images per PAL-LTER
field season, classified at a rate of
101 images per second on a machine
with 32 GB of RAM and 12-GB
GPU, takes ~8.25 hr to classify). Ad-
ditionally, the CNN could be used as
a tool to characterize phytoplankton
communities in the field in near-real
time to inform opportunistic sam-
pling strategies (one PAL-LTER
sampling station with ~35,000 im-
ages takes ~5.75 min to classify).
The combination of the IFCB and a
high-accuracy automated classification
system will allow the PAL-LTER to
learn more about shifts in phytoplank-
ton community and size dynamics
associated with rapidly changing envi-
ronmental conditions.
Method
Phytoplankton Image Collection
and Processing

IFCB data were collected as part of
the PAL-LTER along the WAP over
three austral summer field seasons:
2017–2018, 2018–2019, and 2019–
2020. For each field season, whole
water samples were collected from
both the annual January cruise along
the WAP and from seasonal sampling
at Palmer Station, Antarctica. The an-
nual January cruise samples a fixed
grid of stations that extends from
Palmer Station in the north (64.77°
S, 64.05°W) to ~700 km south near
Charcot Island (69.45°S, 75.15°W),
and from coastal to slope waters
~200 km offshore (see Figure 1 in
Steinberg et al., 2015). At each grid
station, five depths are sampled rang-
September/Octo
ing from the surface to hundreds of
meters deep depending on oceano-
graphic water column features. Sea-
sonal sampling occurs twice per
week from November through
March at two stations within 15 km
of Palmer Station: Station B (an in-
shore station with bottom depths of
~75 m), and Station E (an offshore sta-
tion with bottom depths of ~200 m;
see Figure 1 in Schofield et al., 2017).
Seven depths are sampled at each sta-
tion: 0, 5, 10, 20, 30, 40, and 50 m
at Station B, and 0, 5, 10, 20, 35,
50, and 65 m at Station E. An IFCB
was used to analyze 5 ml from each
whole water sample, acquiring one
image for each phytoplankton cell/
chain in the sample (Figure 1). Samples
were passed through a 150-μm Nitex
screen prior to analysis to prevent
large cells from clogging the IFCB’s
flow cell. Cells with a major axis length
<25 pixels (7.35 μm) were eliminated
from the analysis as the image resolu-
tion was insufficient to provide clear
identification.

Images were processed using de-
fault methods and software from
Sosik & Olson (2007; https://
github.com/hsosik/ifcb-analysis/
wiki). Image processing results in a set
of 233 features describing each image
including fluorescence, scattering
intens i ty , equiva lent spher ica l
diameter, area, volume, and other
morphometric parameters such as
image texture and histogram of
oriented gradients. Processed images,
metadata , and their associated
features were uploaded to the web
application EcoTaxa (Picheral et al.,
2017; https://ecotaxa.obs-vlfr.fr).
Using EcoTaxa, a subset of 18,699
images was visually inspected and
manually classified into 38 living
g roups ( t axonomic re so lu t ion
ranging from genus to class) and
ber 2022 Volume 56 Number 5 47



two nonliving groups (detritus and
bubbles), with at least 100 images
per group. Manual identification of
individual cells was performed to the
highest possible taxonomic resolution
(e.g., most diatoms were identified to
the genus level and most phytoflagel-
lates such as cryptophytes, haptophytes,
and prasinophytes were identified to
class level), with guidance from Hasle
et al. (1997) and Scott et al. (2005).

Model Development
The model used in this work is a

relatively small CNN (compared to
common state-of-the-art architec-
tures) with eight convolutional layers
ending in three dense layers and a total
of 2 million parameters (https://
github.com/patrickcgray/deep_ifcb).
The IFCB processing software outputs
images clipped to the cell extent and
thus object detection is not needed,
just image classification. All images
are grayscale and can vary in size
depending on the cell size. Each
image was resampled to 150 × 150
pixels. Since most images are not
square, the image is resized so the
larger dimension is 150 pixels and
then the smaller dimension is filled
with black pixels to reach 150 pixels
so as not to distort the cell morphology.

The 18,699 manually validated
images were divided into training
and validation subsets via an 80/20
split, resulting in 14,959 images for
training and 3,740 images for valida-
tion. The minimum number of im-
ages in a class was 116 with an
average of 400 for the 38 classes.
Training samples (images + features)
were augmented to increase training
sample size via image rotations, flips,
Gaussian noise, and contrast changes.
Features were also randomly multi-
plied by a factor between 0.8 and
1.2 to help augment them and make
48 Marine Technology Society Journa
the model less sensitive to natural
noise in these inputs. After augmen-
tation, a training dataset of 40,000
samples with 1,000 in each class was
used to train the CNN. The 3,740 un-
augmented images from the validation
set, approximately evenly split across
classes, were to report validation met-
rics and choose the stopping point in
training. These samples were not
seen by the model during training
time.

Model precision, recall, and f1-
score were calculated for the 40 tax-
onomic groups (henceforth called
“unmerged data”) and for eight broad-
er taxonomic groupings (henceforth
called “merged data” and includes
pennate and centric diatoms, crypto-
phytes, prasinophytes, mixed flagel-
lates, haptophytes, microzooplankton,
and other). The “other” group in-
cludes primarily detritus with some
bubbles. Precision is defined as true
positives divided by the sum of true
positives and false positives; it is the
proportion of positive identifications
that are correct. Recall is defined as
true positives divided by the sum of
true positives and false negatives; it is
the proportion of actual positives
that are identified correctly. The f1-
score is the harmonic mean of preci-
sion and recall. Confusion matrices
were also generated showing the per-
cent of manually validated images
predicted in each category by the
CNN.

Model Evaluation
To further evaluate the model, we

analyzed a new subset of 10,269 im-
ages selected randomly from the nat-
ural distribution of cells in the WAP
and filtered by cell major axis length
>25 pixels. As a baseline comparison,
we used EcoTaxa’s RF algorithm to
analyze the same images, using a max-
l

imum of 500 images per group to
prevent extreme imbalance in train-
ing. Predictions from both models
were compared to manual identifica-
tion of the images. Model precision,
recall, and f1-score were calculated
for unmerged and merged data for
both the CNN and RF models, and
a confusion matrix was generated for
the CNN.

Case Study: Phytoplankton
Seasonal Succession at
Palmer Station

After training and evaluation, the
model was applied to two austral
summer field seasons (2017–2018
and 2018–2019) of IFCB images
from Palmer Station (surface samples
from Station B) to conduct a pre-
liminary assessment of its utility
for characterizing WAP ecological
processes. CNN predictions were
compared to manual validation of
the images by calculating the differ-
ence between the two methods to
determine the accuracy of the pre-
dicted seasonal trends. Additionally,
centric and pennate diatoms were
separated into size classes (<10 μm,
10–15 μm, 15–20 μm, 20–50 μm,
and >50 μm) to help elucidate sea-
sonal diatom diversity trends.

Because phytoplankton phenology
is tightly linked to seasonal sea ice dy-
namics (Vernet et al., 2008), general
seasonal succession patterns and dia-
tom diversity data were compared to
the timing and concentration of sea
ice in the Palmer region. Sea ice met-
rics were calculated from satellite-
derived daily sea ice concentration (%)
using the Goddard Space Flight Center
Bootstrap algorithm version 3.1. Sea ice
duration is the time elapsed between
day of advance and day of retreat. All
sea ice metrics use the 200-km area
south and west of Palmer Station. See
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Stammerjohn et al. (2008) for more in-
formation.
Results
Model Accuracy

When assessed using the valida-
tion dataset, the overall precision, re-
call, and f1-score of the model were
93.8, 93.7, and 93.7%, respectively.
Using the same metrics on training,
data led to values just 1%–2% higher,
not indicative of any kind of overfit-
ting. After merging the initial set of
40 classes into the eight broader taxo-
nomic groups, the precision, recall,
and f1-score of the model all in-
creased to 96.5%. Accuracy per
group was >95% for all groups except
for microzooplankton (>80%), mixed
flagellates (>90%), and other (>90%).
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Using the model to predict on the
10,269 randomly selected images re-
sulted in unmerged and merged f1-
scores of 46.5% and 47.6%, respec-
tively. While a major decrease com-
pared to the balanced validation
metrics, this is a 12% increase in the
unmerged f1-score over EcoTaxa’s RF
model (46.5% vs. 41.5%, respective-
ly), which was trained on the same
training data and evaluated on the
same validation set. The CNN pre-
dicted most accurately for pennate di-
atoms (92.9%) and performed worse
for microzooplankton (66.7%),
mixed flagellates (66.2%), crypto-
phytes (65.0%), and centric diatoms
(64.3%; Table 1). Our model was
least precise predicting prasinophytes
(39.6%) and other cells (14.9%;
Table 1). Only one haptophyte was
l

manually identified in the test dataset
but was predicted correctly.

Case Study: Phytoplankton
Seasonal Succession at
Palmer Station

Overall, the CNN identified im-
portant seasonal trends in phyto-
plankton dynamics. In both 2017–
2018 and 2018–2019, peak phyto-
plankton biovolume occurred mid-
summer (1 January 2018 and 4
February 2019; Figures 2A–2B and
2D–2E). In 2017–2018, the peak
was dominated by a mix of crypto-
phytes and mixed flagellates, while in
2017–2018, the peak was dominated
by pennate diatoms. The CNN also
identified late spring and early au-
tumn increases in centric diatoms
in 2018–2019 (Figures 2D–2E).
FIGURE 2

Methods comparison of phytoplankton seasonal succession for the (A–C) 2017–2018 and (D–F) 2018–2019 field seasons. For each merged
group, (A and D) show manually validated biovolume data, (B and E) show CNN-predicted biovolume data, and (C and F) show the biovolume
difference between CNN-predicted and manually validated methods, with positive values indicating that the CNN overestimated biovolume and
negative values indicating that the CNN underestimated biovolume.



However, there were several dis-
crepancies between the two methods.
Figures 2C and 2F show the differ-
ence in biovolume between CNN pre-
diction and manual validation. In both
years, but particularly 2017–2018,
there were many cells manually identi-
fied as “other” (e.g., detritus and bub-
bles) that were classified as mixed
flagellates, prasinophytes, and centric
diatoms by the CNN (Figure 2 and
Table 2). In this manner, the CNN
appeared to overestimate the abun-
dance of these groups, and to overes-
timate total biovolume attributed to
living phytoplankton (e.g., the sum-
mer phytoplankton peak in 2017;
Figures 2A–2C and Table 2). The
CNN also underestimated the abun-
dance of cryptophytes (Table 2), espe-
cially during peak biovolume in both
years (Figures 2C and 2F).

The CNN identified interesting
seasonal trends in the diatom com-
munity. There was less total diatom
biovolume in 2017–2018 compared
to 2018–2019 (Figures 3A and 3D).
In both years, centric diatoms shifted
from a dominance of >20-μm cells in
November and December, to a dom-
inance of <20-μm cells in February
and March (Figures 3B and 3E). Pen-
nate diatoms were consistently domi-
nated by cells <10 μm, with an
increase in biovolume during Febru-
ary and March, especially in 2018–
2019 (Figures 3C and 3F). Both
years were primarily dominated by
centric diatoms, with the notable ex-
ception of a large peak in pennate di-
atom biovolume in 2018 (Figures 3A
and 3D).

The winter of 2017 had lower
maximum sea ice coverage and short-
er sea ice duration than 2018, but a
later sea ice retreat (Table 3 and Fig-
ure 4). Sea ice cleared the region rap-
idly in 2017, dropping from 52%
coverage in November, to 12% in
December, and 3% in January (Fig-
ure 4). In 2018, the sea ice retreated
earlier but coverage stayed higher in
the region into the summer, with
24% coverage in November, 17%
coverage in December, and 10% cov-
erage in January (Figure 4).
September/Octo
Discussion
Model Development: Successes
and Challenges

In this work, we used a fairly sim-
ple CNN instead of common state-
of-the-art architectures. While we
did initially test a few networks
such as Xception, DenseNet, and
VGG16, we found they did not per-
form as well as a smaller CNN with
fewer parameters. Our assumption is
that this stems from the limited
training sample size and the lack of
transferability in the features from
typical large Red Green Blue (RGB)
training datasets (e.g., COCO or Im-
ageNet) for IFCB images. Addition-
ally, we tested a range of simple
CNN architectures and found the val-
idation score generally insensitive to
minor changes in structure, and thus
selected the simplest architecture be-
fore validation score decreased.

Overall, we achieved the primary
goal of our study: to create a CNN
to accurately sort WAP phytoplank-
ton into taxonomic categories. On
our balanced validation dataset, the
TABLE 2

Difference (mean, minimum absolute, and maximum absolute) between CNN-predicted biovolume and manually validated biovolume for each
merged taxonomic group in each summer field season. Positive values indicate that the CNN overestimates biovolume, and negative values in-
dicate that the CNN underestimates biovolume. Dates where there were <10 cells detected for a particular group via either method were removed
from this analysis. Biovolume units are μL L−1.
2017–2018
 2018–2019
Merged Groups
 n

Mean
Difference
Minimum
Absolute
Difference
Maximum
Absolute
Difference
 n
Mean
Difference
ber 2022
Minimum
Absolute
Difference
Volume 56 Num
Maximum
Absolute
Difference
Pennate diatoms
 34
 0.03
 2.5 × 10−6
 0.11
 38
 0.02
 1.87 × 10−4
 0.17
Centric diatoms
 34
 0.02
 1.8 × 10−5
 0.40
 26
 −0.006
 8.77 × 10−5
 0.13
Cryptophytes
 35
 −0.007
 9.0 × 10−5
 0.14
 34
 −0.009
 5.76 × 10−4
 0.16
Prasinophytes
 35
 0.04
 3.3 × 10−4
 0.22
 33
 0.003
 2.21 × 10−4
 0.09
Haptophytes
 1
 NA
 NA
 NA
 5
 8.67 × 10−5
 0
 6.88 × 10−4
Mixed flagellates
 35
 0.06
 0.003
 0.23
 39
 0.06
 1.21 × 10−4
 0.22
Other
 35
 −0.15
 0.005
 0.80
 41
 −0.07
 0.002
 0.31
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CNN achieved an f1-score of 93.7%
with an increase to 96.5% for merged
taxonomic groupings. This indicates
that our phytoplankton imagery
data can be successfully and accu-
rately sorted with machine learning
techniques, greatly reducing the
time spent classifying these images
manually. Absolute comparisons to
classification algorithms from other
studies in the literature is challeng-
ing given different numbers of clas-
ses, data fi l tering schemes, and
methods for determining what con-
stitutes test data, but in general,
these metrics compare very favor-
ably to other models. The develop-
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men t o f r e g i o n a l a n d g l o b a l
phytoplankton-classifying CNNs
presents an opportunity to greatly
advance our under s t and ing of
plankton diversity and ecology.

However, our model f1-score
dropped dramatically from 93.7%
on the validation set to 46.5% during
model evaluation on a new, random
dataset with a class distribution repre-
sentative of that found in natural wa-
ters. This low model accuracy when
classifying planktonic imagery from
the natural environment is a key chal-
lenge that plagues many other ecolog-
ical studies (Culhane et al., 2020;
Kerr et al., 2020; Lee et al., 2016)
and that must be addressed in plank-
ton classification. One reason for this
decrease is the highly imbalanced class
distributions of naturally occurring
phytoplankton assemblages compared
to our model testing dataset (e.g., see
n values in Table 1). Model categories
such as detritus are highly abundant
in our dataset, often composing up
to 50% of the biovolume in a sample,
l

while other ecologically important
groups, such as large, morphologically
distinct diatoms including Corethron
pennatum and Eucampia antarctica,
are encountered sporadically in our da-
taset. A small percentage of detritus
misclassified as one of these rare classes
can easily overwhelm that category.

Nearly all previous studies report
accuracy for a balanced and curated
test dataset rather than a random sam-
ple of natural waters. Though alter-
nate approaches exist to ameliorate
the problem (Tan et al., 2020), typi-
cally during model development, a
balanced class distribution is neces-
sary to ensure the model equally
weights each category during training.
For example, if during model devel-
opment a single class composed
90% of the training dataset, the
model could classify every sample as
that class, ignoring all others, and be
90% accurate. The gradient descent
optimization algorithm used to train
the network would be unlikely to
learn any other classes. The few stud-
ies that do report accuracy in natural
samples show a drop-off similar to
this study (see Table 2 in Sosik &
Olson, 2007; Lee et al., 2016).

Highly unbalanced classes in the
natural environment create several
model development choices, includ-
ing whether to exclude, up-sample,
or augment low incidence classes,
and how specific model classes should
be (e.g., high-level classes like dia-
toms, dinoflagellates, etc., or genus-
level classes like Thalassiosira and
Gyrodinium). We tried to strike a bal-
ance in our model setup by eliminat-
ing extremely rare groups or merging
them into broader groups while keep-
ing them morphologically distinct to
prevent model confusion. However,
there remains a degree of high intra-
class variance and interclass similarity
FIGURE 3

Diatom seasonal diversity as predicted by the CNN for the (A−C) 2017–2018 and (D–F) 2018–
2019 field seasons. (A and D) Total biovolume attributed to pennate and centric diatoms. (B and
E) Total biovolume attributed to different size classes of centric diatoms. (C and F) Total bio-
volume attributed to different size classes of pennate diatoms.
TABLE 3

Sea ice characterization.
Year
Sea Ice
Duration
(Days)
Date of
Sea Ice
Retreat
2017
 132
 December 3
2018
 153
 November 27



in morphology that was impossible to
eliminate (e.g., 14.9% classification
accuracy for “other” in Table 1).
This challenge can be addressed on
the other end of model development,
by filtering samples where model un-
certainty is high. The CNN outputs a
confidence score (from the Softmax
classification layer) for each prediction
from 0 to 1 that can be used to filter
samples below a certain threshold.
While potentially increasing the
model accuracy, this is not always a re-
liable metric of uncertainty (Nguyen
et al., 2015) and could bias the system
against certain classes that are challeng-
ing to classify, and thus was not imple-
mented in this work. The heavy long-
tailed distribution of phytoplankton
species makes it extremely challenging
to incorporate all possible classes that
could be encountered in the training
set. Lessons from work in domain gen-
eralization and out-of-distribution clas-
sification (Zhou et al., 2022) need to
be incorporated into future phyto-
plankton classifiers.

Another potential cause of reduced
model accuracy is data labelling er-
rors. Theoretically, manual identifica-
tion of images should be close to
perfect. However, in this work and
most others, there is often a bias for
training and test data that is easily
identifiable by manual validation,
which prevents test metrics from
translating exactly to the wild. There
are also many images with conglomer-
ations of cells including detritus and
multiple living species. While these
may be manually sorted into a catego-
ry labeled “multiple” or discarded
from the analysis, a CNN might
sort these images into the most prom-
inent class present within each image.
Additionally, morphologically ambig-
uous cells may be sorted more accu-
rately by a CNN than by manual
September/Octo
identification, as a CNN can learn re-
lationships between a broad range of
image attributes and potential classes.
One way we attempted to eliminate a
portion of these ambiguous cells was
to exclude all cells with a major axis
length <25 pixels (7.35 μm) prior to
model training. These small cells are
below the quantifiable limit of detec-
tion based on instrument resolution
and, thus, have a high probability of
being incorrectly identified. Accurate-
ly classifying these smaller cells will
likely require techniques other than
imaging. Previously described issues
of class imbalance can also magnify la-
belling errors, especially when these
errors are within abundant classes
such as “detritus.”

Case Study: Phytoplankton
Seasonal Succession at
Palmer Station

Tables 1-2 and Figure 2 showed
that there are sometimes major inac-
curacies in the CNN predictions
compared to manual validation.
Thus, it is important to note that
the predictions from our model in
its current state should not be used
without manual validation or verifica-
tion by other methods (e.g., HPLC).
However, Figure 2 showed that the
model still captured important sea-
sonal trends in phytoplankton taxon-
omy, at much higher resolution than
the PAL-LTER has previously had,
making it a useful tool to obtain a
preliminary prediction of species
composition. This could be very help-
ful in determining near real-time sam-
pling strategies, choosing dates/
stations/samples of interest to per-
form a more comprehensive analysis
on, or investigating preliminary eco-
logical patterns that could be expand-
ed upon the in future. This case study
attempts to explore this last option.
FIGURE 4

Percent sea ice coverage in the 200-km area south and west of Palmer Station during the 2017–
2018 season (black) and the 2018–2019 season (blue).
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Similar to other studies (Saba et al.,
2014; Schofield et al., 2017), we
found that following a winter with
lower sea ice (2017), the phytoplank-
ton community had less diatoms and
more mixed flagellates and crypto-
phytes, and following a winter with
higher sea ice (2018), the community
was dominated by diatoms. Following
trends found in previous years at
Palmer Station (Schofield et al.,
2017), diatoms dominated in the late
spring and early autumn, and there
were higher cryptophyte concentra-
tions in December and January.

Along the WAP, the timing and
duration of phytoplankton blooms is
linked to light availability and sea ice
retreat. The growing season initiates
in austral spring as daylength becomes
longer, solar warming increases, and
sea ice melts, combining to stratify
the upper water column providing a
stable environment for phytoplankton
growth (Venables et al., 2013; Vernet
et al., 2008). This promotes the devel-
opment of a large, diatom-dominated
spring bloom as we saw in 2018
(Mitchell & Holm-Hansen, 1991;
Prézelin et al., 2000). In 2017, there
was 52% sea ice coverage in Novem-
ber, likely inhibiting light penetration
and subsequent phytoplankton
growth. The large drop in sea ice cov-
erage from November to December
suggests that sea ice was advected
from the region by wind, reducing
local melting near Palmer Station and
potentially reducing the stability of the
upper mixed layer. In 2018, although
sea ice retreat was 6 days later than in
2017, November sea ice coverage was
only 24%, allowing adequate light for
phytoplankton growth. Additionally,
sea ice coverage (and subsequent local
ice melt) lingered into December and
January (17 and 10%, respectively),
providing a stable environment for
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growth well into the summer. Match-
ing our results, Annett et al. (2010)
found that rapid sea ice retreat was as-
sociated with lower proportions of
centric diatoms during the spring in
Ryder Bay, Antarctica.

Despite differences in phytoplank-
ton abundance and community struc-
ture between the 2 years, there were
similar trends in diatom seasonal suc-
cession. The late spring/early summer
was dominated by large (>20 μm)
centric diatoms timed with sea ice re-
treat as described above. Moving
through summer, centric diatoms be-
came smaller (<20 μm), and the
abundance of <10-μm pennate dia-
toms increased. A potential explana-
tion for this size shift is increased
glacial meltwater from January to
March (Meredith et al., 2021). In-
creased meltwater inputs cause
stronger surface stratification, inhi-
biting nutrient injections from dee-
per waters via mixing and selecting
for smaller species with higher sur-
face-area-to-volume ratios to opti-
mize nutrient uptake (Li et al.,
2009). Additionally, experimental
data from Potter Cove, Antarctica,
found that low salinity conditions
(30 ppt) shift the diatom community
from large centric cells to small pen-
nate cells (Hernando et al., 2015).
The authors suggest that this shift is
largely driven by differences in toler-
ance and physiological response to os-
motic stress between morphotypes.
Thus, increases in glacial meltwater
in late summer could cause diatom
communities to become smaller and
increasingly dominated by pennate
cells as we observed.

Conclusions and Next Steps
As illustrated by the case study,

our CNN is a step forward for under-
standing phytoplankton ecology
l

along the WAP. However, there are
still improvements to be made before
it becomes a long-term tool for the
community. As explained above, an
important issue to address is the
long-tail distribution of natural phy-
toplankton assemblages, which
makes it challenging to train a
model that is accurate across the full
range of species it could encounter.
This could lead to incorrect ecological
takeaways; for example, abundant
classes occasionally misclassified as
rare ones can entirely change trends
for that rare class.

One option to better organize
these undifferentiated classes that are
challenging to manually discriminate
(e.g., “detritus” or “multiple”) is to
use unsupervised methods (e.g., non-
linear dimensionality reduction, clus-
tering, and manifold learning) to
break these classes into several new
groups. Defining classes purely via
natural clusters in the data, rather
than taxonomy, could potentially
help models through more easily sep-
arable decision boundaries. Semi-su-
pervised classification could also
reduce labeled training data needs,
and in many cases, unsupervised tech-
niques may help identify anomalous
groups (Pastore et al., 2020), or
even be sufficient for answering ques-
tions about phytoplankton dynamics
without any need for supervised clas-
sification (Culhane et al., 2020). An-
other method could be to use a stage-
wise approach, with a one-class-classi-
fier or binary classification to exclude
“detritus” and “multiple” images up
front to limit the spread of these is-
sues into the full output range,
which is exacerbated by the preva-
lence of these classes. In tandem to
improving the classification itself,
per class uncertainty estimates (see
Sosik & Olson, 2007) will be critical



to unbiased extrapolation from CNN
output to ecological dynamics.

With further increases in model
accuracy, we hope our CNN will
become a helpful tool for phyto-
p l ankton re sea r ch . Long- t e rm
warming and sea ice declines along
the WAP contribute to shifts to
smaller phytoplankton populations
with less biomass (Montes-Hugo
et al., 2009), and these trends are
likely to continue. Understanding the
seasonal and spatial dynamics of phy-
toplankton diversity is integral to con-
textualizing how communities will
change in the future. Beyond the
CNN’s ability to complement IFCB-
like tools and rapidly classify entire sea-
sons of collected phytoplankton imag-
ery, it can also be used to characterize
phytoplankton communities in near-
real time (~5 min per PAL-LTER sta-
tion). Getting a snapshot of species
and cell size dynamics soon after col-
lecting a sample would aid in opportu-
nistic sampling while still in the field.
This would be invaluable, as research
time in Antarctica is both limited
and expensive.

The PAL-LTER is not the only
group experiencing these challenges:
There is a broad phytoplankton imag-
ing user community searching for
methods to automate sample classifi-
cation to reduce the need for manual
image validation. Various groups are
independently creating phytoplank-
ton CNNs and other models for
their study sites of interest. We im-
plore the community to begin report-
ing their model metrics on data with
distributions representative of the nat-
ural environment, sharing labeled
data openly on freely accessible plat-
forms (e.g., EcoTaxa, IFCB Dash-
board) , and shar ing open and
reproducible code for processing and
model development. As models im-
prove, the community may be able
to develop a series of regional models,
freely available to download for classi-
fication of a dataset, or even a single
generalizable model usable for the
global ocean. Moving forward toward
this vision, it will be critical for ocean-
ographers to collaborate with com-
puter sc ient i s t s and modeler s ,
applying the best computer vision
and classification techniques to these
datasets to ultimately better under-
stand phytoplankton dynamics in a
changing ocean.

Even beyond oceanography, the
challenge of classifying imbalanced,
long-tail distributions datasets is a
broad issue in applied computer vi-
sion, particularly in ecology (Van
Horn & Perona, 2017). While there
is not yet a consensus on how to re-
solve this class of problems, there are
many promising approaches (Liu
et al., 2019). This includes practical
iterative human–machine workflows
where low confidence classes from a
model are continually validated, and
the model is continually retrained
and improved over time (Miao
et al., 2021). Improved loss functions
designed for class distributions found
in natural environments could be a
key step forward (Cao et al., 2019).
Improvements are needed to identify
unknown classes never seen in train-
ing (often model confidence scores
are used for this purpose but are not
reliable)—there is promise in using
the distance in embedding spaces or
novel unsupervised approaches
(Geng et al., 2021). These technical
advances may in time resolve this
issue, or they may simply supplement
efforts to accurately label more data
that will almost certainly improve
model performance. Within the
IFCB user community, a large, consis-
tent, accurately labeled dataset pooled
September/Octo
from all IFCB users is likely one of
the best solutions to these issues.

Lastly, a broader challenge the
phytoplankton community faces is
an increasing scarcity of taxonomists.
The development of alternative
methods to classify phytoplankton
(HPLC, molecular analyses, etc.) has
reduced time and effort and/or in-
creased identification accuracy, lead-
i n g t o a d im in i s h ed n e ed t o
manually classify phytoplankton cells
via microscopy. However, emerging
imaging technologies reemphasize
the importance of taxonomic experts
in helping to build the phytoplankton
image libraries required to develop
automatic classification systems. The
question, then, is how to expand tax-
onomic expertise within the next gen-
eration of phytoplankton researchers
to meet this demand while continuing
to advance their knowledge of new
methods and technologies? Address-
ing this question will require a for-
ward-looking assessment of the
required skills and expertise needed
for the future phytoplankton work-
force to tackle important issues such
as warming oceans, coastal eutrophi-
cation, ocean acidification, etc. that
impact marine ecosystems.
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