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Abstract
Accurate and robust retrieval of ocean color from remote sensing enables critical observations of aquatic

natural systems, from open ocean biological oceanography, coastal biodiversity, and water quality for
human health. In the last decade, studies have increasingly highlighted the important role of small-scale
processes in coastal and marine ecology and biogeochemistry, but observation and modeling at these scales
remains technologically limited. Unoccupied aircraft systems (UAS, aka drones) can rapidly sample large
areas with high spatial and temporal resolution; but the challenge of accurately retrieving ocean color, par-
ticularly with common wide field-of-view multispectral imagers, has limited the adoption of this technol-
ogy. As UAS endurance, autonomy, and sensor capabilities continue to increase, so does this technology’s
potential to observe the ocean at fine scales, but only if proper protocols are followed. The present study
provides a guide for achieving (1) ideal viewing geometry of UAS-borne ocean color sensors, (2) techniques
for the removal of sun glint and reflected skylight to derive water-leaving radiances, (3) characterization of
uncertainty in these measurements, and (4) converting water-leaving radiances to remote-sensing reflec-
tance for analytic end products such as chlorophyll a estimates. Documented open-source code facilitates
replication of this emerging technique. Using this methodology, we briefly describing fine-scale variability
of the Gulf Stream front off North Carolina alongside synoptic satellite data and in situ measurements for
comparison. These results demonstrate how UAS-based ocean color measurements complement and
enhance conventional ocean observations and modeling to resolve fine-scale variability and close the lacuna
between satellite and in situ methods.

Fine-scale ocean color observations
Remote sensing of ocean color informs ocean biology by

using light to describe spatial distributions, community com-
positions, types and gradients of organic matter, particle sizes,
productivity levels, or simply chlorophyll a (Chl a) concentra-
tions (International Ocean Color Coordinating Group
[IOCCG] 2008; McClain 2009). Advancements in understand-
ing ocean biogeochemistry have often accompanied

advancements in ocean color remote sensing: early experi-
mental sensors in personal airplanes confirmed an association
between decreasing blue light from the ocean with increasing
Chl a (Clarke et al. 1970), and soon National Aeronautics and
Space Administration’s (NASA) upcoming Plankton, Aerosol,
Cloud, ocean, Ecosystem mission will add hyperspectral ocean
color measurements and polarimetry that will reveal new
details of the carbon cycle and phytoplankton communities
(Werdell et al. 2019). Even still, current and upcoming satellite
remote-sensing approaches cannot describe submesoscale (O
[3–30 km]) and fine-scale (O[< 3 km]) ocean features, cannot
resolve coastal areas due to their scale and optical complexity,
and are often hindered by cloud cover. Higher-resolution ter-
restrial satellites, such as Landsat and Sentinel-2 may aid in
this work, but their application to marine systems is hindered
by insufficient atmospheric correction, spectral band locations
that are not tuned for marine applications and thus miss key
absorption peaks, lower sensitivity, and long revisit times. In
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addition, these terrestrial focused satellites typically do not
downlink imagery of the open ocean where coastline is not in
the image (Pahlevan et al. 2017; Wulder et al. 2019).

Submesoscale fluid dynamics can drive nutrient fluxes
across the mixed layer, can subduct particles from the mixed
layer below the thermocline, and can increase stratification by
horizontally tilting density layers (Mahadevan 2016). Such
processes occur at scales of time and space germane to the life
cycles of phytoplankton, and accordingly they appear to
strongly modulate primary productivity, ecosystem structure,
and marine biodiversity (Lévy et al. 2018). Over the last
two decades, this alignment of scale has inspired extensive
study into the biological significance of submesoscale ocean
dynamics (Lévy et al. 2001; D’Ovidio et al. 2010; Ruiz
et al. 2019). This intensifying effort demands remote-sensing
instruments that complement satellite observations at the
scale of ocean basins (e.g., Aqua’s Moderate Resolution
Imaging Spectroradiometer [MODIS] and Suomi NPP’s Visible
Infrared Imaging Radiometer Suite [VIIRS] platforms) by
resolving submesoscale dynamics.

Strong persistent mesoscale fronts, such as the Gulf
Stream’s north wall, exhibit consistent submesoscale dynam-
ics (Mcwilliams et al. 2019); they are linked to increased pro-
ductivity in phytoplankton, zooplankton, and fish, and
represent a hotspot of ocean predator diversity (Mann and
Lazier 2005). The Gulf Stream front off Cape Hatteras, North
Carolina is an ideal testbed for demonstrating fine-scale ocean
observation techniques. Though the current is overall in geo-
strophic balance, western boundary currents like the Gulf
Stream often manifest substantial ageostrophic circulation,
moving both nutrients and organisms vertically at high speeds
compared to most of the ocean. The Gulf Stream is often
assumed to be an ecological barrier at the large scale (Bower
et al. 1985), but instability in the front’s geostrophic balance
not only injects nutrients into the euphotic zone, but drives
the formation of submesoscale filaments, eddies, and streamers
on both sides of the Gulf Stream (Gula et al. 2015).
Submesoscale features may dominate biogeochemical exchange
across the front (Klymak et al. 2016); however, their mechanics
and ecological impacts remain poorly understood due to their
ephemeral and fine-scale nature.

Unoccupied aircraft systems (UAS) address this submesoscale
gap in observational capacity with the ability to capture fine
spatial scales and repeat observations within a single day, as is
necessary to adequately characterize processes of this scale
(Gray et al. 2022). Diel variability, such as changing phyto-
plankton fluorescence (Behrenfeld et al. 2009), can characterize
the physiological status of a phytoplankton population, and
subkilometer oscillations in Chl a concentration can indicate
underlying physical drivers; but both of these dynamics can
easily be missed or aliased when remote-sensing observations
are even slightly too coarse in space or time. At the other
extreme, in situ oceanographic methods confront a “syn-
opticity problem” (Martin 2003), whereby they cannot collect

data at a sufficient scale or resolution to characterize target vari-
ables before flow redistributes the system and its values. UAS
methods readily achieve temporal and spatial coverage between
the limits of satellite and vessel-based methods, complementing
these conventional techniques to achieve the synoptic view
necessary to describe submesoscale physical–biological interac-
tions (Fig. 1).

Review of optical and logistical challenges
Accurate measurement of ocean color for higher level prod-

ucts such as Chl a, productivity estimates, and phytoplankton
functional types requires methods to accurately derive the
radiance of light leaving the water. The spectral composition
of light changes as photons transit through the water column
due to absorption and scattering. By sensing these specific
photons that have transited through the water column, and
not those reflected off the surface or scattered in the atmo-
sphere, remote-sensing techniques can determine properties
and constituents of the water column that altered that light.

Water-leaving radiance measurements (Lw) are typically
normalized by downwelling irradiance measurements (Ed) to
obtain the remote-sensing reflectance (Rrs); this Rrs value is the
primary goal and first product in most workflows for
processing ocean color measurements. However, it can be rela-
tively challenging to derive Rrs from aerial sensors, where radi-
ance measurements of the sea surface can be dominated by
photons that never entered the water, such as specular sun
glint (Fig. 2a), skylight that reflects off the water’s surface
(Fig. 2b), and photons scattered by the atmosphere. Atmo-
spheric scattering is minimal for sensors at low altitudes (100 s
of meters) over water (Kirk 2010; Kim et al. 2013), so sun glint
and reflected skylight dominate the noise in estimates of Rrs in
these situations (IOCCG 2019). Maintaining certain viewing
geometries can substantially reduce sun glint and reflected
skylight (Mobley 1999) in above water radiometry, with a rec-
ommended sensor orientation of 40! off nadir (θ) and 135!

azimuthally off the sun (φ; Fig. 3). It is challenging to precisely
maintain these angles on a ship or platform in the ocean due
to wave movement and self-shading, but a multirotor UAS can
achieve consistent, optimal geometry either by flying on a
fixed heading or by holding the sensor’s orientation steady on
a gimbal. In addition, the small shadow of an airborne UAS
does not materially influence measured Rrs, in contrast to that
of a ship or fixed platform.

A large and growing repertoire of techniques are available
to address challenges of glare and reflection in aerial imagery
of ocean color (Mobley 1999; Lee et al. 2010; Zhang
et al. 2017; O’Shea et al. 2020; Windle and Silsbe 2021). One
approach that is widely used and easily implemented uses
three measurements to obtain Rrs: total sea radiance (Lt), sky
radiance (Lsky), and downwelling irradiance (Ed) (Fig. 3;
Ruddick et al. 2019). These measurements are used to remove
the contribution of reflected sky radiance from the total
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radiance measured above the water’s surface, yielding only
water-leaving radiance, using the following equation:

Lw θ,φ, λð Þ¼Lt θ,φ, λð Þ%ρ θ,φ, θ0,ΩFOV,Wð Þ&Lsky θ0,φ, λð Þ, ð1Þ

where θ and φ specify the polar and azimuthal viewing angles,
respectively; λ is the wavelength; ρ is the effective sea-surface

reflectance of sky radiance (Lsky)—a function of viewing
geometry (θ,φ), sensor field-of-view (ΩFOV); sky radiance distri-
bution (Lsky(θ0,φ,λ)); and surface roughness, here represented
by the common proxy variable wind speed (W). After sub-
tracting the reflected sky radiance from Lt, Lw can be normal-
ized by Ed at the surface to obtain Rrs using the following
equation:

Fig. 1. Spatiotemporal scales of ocean observation platforms. Three scales of spatial resolutions are represented for a section of the Gulf Stream front off
Cape Hatteras (inset) using resampled Chl a imagery from the Landsat 8 Aquatic Reflectance product: native 30-m resolution featuring submesoscale fila-
ments and eddies; resampled 1-km resolution representing typical imagery from ocean observing satellites; resampled 10-km resolution representing typi-
cal “high-resolution” outputs of global- or basin-scale biogeochemical models. Figure inspiration from NASA ABoVE “Scaling Diagram” https://above.
nasa.gov/materials.html.

Fig. 2. Aerial measurements of ocean color are often challenged by light reflecting off the sea surface. UAS images can include specular sun glint (a, bot-
tom right quadrant) that overwhelms the water leaving radiance and reflected skylight (b) that can shift the measured spectrum of ocean color toward
that of the reflected skylight, as seen in the shift from green in the bottom of the image towards blue at the top.
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Rrs λð Þ¼Lw θ,φ, λð Þ=Ed λð Þ: ð2Þ

This calculated Rrs measurement is needed to generate nearly
all higher-level ocean color products (IOCCG 2019).

One major challenge in this calculation is the estimation of
ρ as a function of several environmental variables and which
varies across the visible spectrum. Many previous estimation
methods (Morel 1980; Mobley 1999) assume that ρ is constant
across the spectrum, which has been shown to be incorrect
(Lee et al. 2010; Zhang et al. 2017). In addition, most publi-
shed examples either (1) obtain measurements from point
spectrometers with a relatively small (< 10!) field of view
(FOV), yielding a single spectrum, rather than an image where
each pixel represents a spectrum; or (2) obtain measurements
from satellites where the pixel scale and contributors to image
noise are materially different. Key assumptions for these sen-
sors do not apply to wide-FOV imaging sensors that are com-
monly used with UAS platforms: a single, fixed ρ value is
especially erroneous because the variance in viewing geometry
across a single image can yield dramatically different contribu-
tions of sky reflection both in magnitude and shape of the
spectrum. The amount and spectral shape of skylight reflected
by the water’s surface into the sensor can range widely from
regions below the sky’s zenith toward regions at the horizon—
for example, around midday with clear skies and typical
marine haze, the spectrum of reflected skylight captured near
the horizon is substantially whiter (spectrally even) than the
blue dominated spectrum captured from near the sky’s zenith
(Gilerson et al. 2018).

While Mobley (1999) determines a ρ value of 0.028 for the
viewing geometry of φ = 135! and θ = 40!, and this
approach works well in low wind and clear sky conditions, in
many cases this can lead to large errors in Lw. Other estimation
methods suggest using near-infrared (NIR; λ = ' 700–800 nm)
radiances to subtract out surface-reflected light under the
assumption that all NIR is reflected (Siegel et al. 2000), but given
that the intensity of reflected skylight varies across the spectrum
(Carrizo et al. 2019), subtracting all measured bands by any sin-
gle fixed value does not accurately correct measurements and
can introduce errors, especially when using band-ratio algo-
rithms (e.g., O’Reilly and Werdell 2019). Methods using NIR
measurements are especially unsuitable for estuarine or near-
shore waters that contain high concentrations of particles which
enhance backscattering in the NIR. Though it is worth noting
bio-optical modeling techniques can estimate NIR in these
regimes (Bailey et al. 2010) and spectral optimization approaches
using estimates of inherent optical properties can help derive
more accurate ρ values across the spectrum (Lee et al. 2010).

Wide-FOV imaging sensors can outperform point spectrome-
ters in many oceanographic applications because image-type
data can provide major insight into spatial properties and can
be filtered to remove unwanted measurements, such as glint,
foam or sargassum, that are often integrated into single-point
spectrum measurements. Given that a fixed ρ value is especially

inappropriate for a wide-FOV imager, we propose a simple
approach that includes a step using the skylight-blocked
approach (SBA) to measure Lw (Tanaka et al. 2006; Lee
et al. 2013, 2018), here called Lw*, which is used as an empirical
baseline for correcting Lt measurements. Given that Lw* can be
easily measured manually using the SBA during most opera-
tional scenarios employing UAS, we show that Lt % Lw* can
solve for ρ & Lsky (the surface reflected skylight, commonly
called Lsr) across all measured bands for a set of environmental
conditions during a short flight (< 1 h)—with fewer assump-
tions than methods that model ρ and measure Lsky.

Study objectives
This study applies and compares multiple methods of deriv-

ing ocean color from UAS imagery to measure submesoscale
variance in Chl a across the Gulf Stream front, with methods
that can be generalized to study diverse oceanographic sys-
tems. We test the ideal viewing geometry for a low-altitude
wide-FOV sensor (Fig. 3), we implement a method for accurate
removal of sky reflectance from imagery from such a sensor
(Eq. 2), we quantify uncertainty in Rrs measured by such a sen-
sor, we propagate this uncertainty to Chl a estimates, and we
demonstrate the implementation of this full workflow on a
survey across the Gulf Stream front. We share this work to
demonstrate and advance the use of UAS to study oceano-
graphic systems at new spatial scales, and to provide new tools
for a broad array of techniques that depend on above-water
radiometry.

Materials and procedures
Unoccupied aircraft system

Ocean color imagery was captured using a Micasense Altum
(https://micasense.com/altum/) multispectral camera payload
gimbal-mounted on a Freefly Alta 6 commercial grade
hexacopter (https://freeflysystems.com/alta). This UAS has a
“motion boot” mode that allows for boot-up and calibration
on a moving vessel—a scenario that prevents at-sea operation
for many UAS. The Alta 6 has a high payload capacity (6.8 kg)
and can be easily adapted to carry different payloads. The
Micasense Altum payload has five optical sensors with filters
centered at 475, 560, 668, 717, and 842 nm, respectively, with
an approximate 20-nm full width at half maximum (FWHM)
response. The FOV on this sensor is 48! (horizontal) & 36.8!

(vertical). This instrument also has a wideband thermal sensor
centered at 11 μm that was not used in this study.

The Micasense Altum payload was mounted on a two-axis
gimbal to stabilize its pitch and roll axes (Supporting Informa-
tion Fig. S1); Yaw was determined by the UAS heading. The
gimbal and sensor were controlled using a custom Arduino
microcontroller that allowed for precise pitch angle and
timing of image capture (code available at https://github.com/
marrs-lab/AltumGimbalCntrl). With this approach, viewing
geometry is held consistent to within 1!—roll is always zero,
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and pitch and yaw are variable depending on the environmen-
tal context. For all ocean color surveys on the Gulf Stream
front, we held pitch at 25! off-nadir and yaw at 135! azimuth-
ally off the sun. This UAS did not send real-time positional
telemetry, but the autopilot did record a detailed internal
flight log that was used for the analysis. To provide a live
map as a navigational aid, we used a redundant Pixhawk auto-
pilot, GPS module (https://ardupilot.org/copter/docs/common-
pixhawk-overview.html) and long-range RFD900 (http://
rfdesign.com.au/products/rfd900-modem/) telemetry radio that
we installed on the aircraft. Map data displayed the real-time
aircraft and ship positions on a Samsung Galaxy Tab7 tablet.
Ed measurements were taken before and after each flight with
the Micasense Altum using the manufacturer’s reflectance
panel.

We collected images at an altitude of 100 m, yielding foot-
prints of approximately 80 m & 60 m and pixel sizes of
' 5 cm & 5 cm though varying across the image depending
on sensor viewing angle. As a first step after launch and con-
current with the SBA measurements, images are taken to pro-
vide the data for Lt % Lw*. Multiple images are taken to
remove waves and glint by averaging across images and
smoothing spatially, with a minimum of 5–10 images needed
for removal. Environmental conditions were stable through-
out the duration of flights.

Gulf Stream front study area
The region off North Carolina’s coast from Cape Lookout

to Cape Hatteras is a highly dynamic confluence of the warm,
rapid, northbound Gulf Stream, the cooler, relatively slow cir-
culation of the Mid Atlantic Bight, and shelf water from the
South Atlantic Bight entrained into the Gulf Stream. This area
spans productive waters at the continental shelf break and oli-
gotrophic deep open ocean, with water depth dropping
sharply from 100 to 1000 m within a lateral span of just a few
dozen kilometers (Fig. 4).

In situ Chl a measurement
In situ Chl a was measured by filtering 100 mL of seawa-

ter onto 0.7 μm GF/F filters, in 100% methanol and reading
fluorescence on a chlorophyll calibrated Turner 10 AU
fluorometer equipped with Welschmeyer filters (Johnson
et al. 2010).

Satellite data
We used multiple ocean-observing satellites to provide

context and comparison with our UAS measurements. We
used Rrs and Chl a products from OLCI, MODIS, and VIIRS.
For Rrs comparisons all imagery was acquired was within
75 min of UAS imagery acquisition. To compare between sat-
ellite and UAS data, UAS images were averaged to a point
measurement and these points were then compared to the
pixels they fall within. For spatial context, we used sea sur-
face temperature products from the Geostationary Opera-
tional Environmental Satellite 16 (GOES-16). MODIS and
VIIRS Chl a products were Level 2, processed using the stan-
dard NASA algorithm and obtained from https://oceancolor.
gsfc.nasa.gov/cgi/browse.pl, OLCI Chl a was Level 2 and
processing using the OC4ME algorithm and obtained from
https://coda.eumetsat.int, and contextual GOES-16 hourly
SST was acquired from https://cwcgom.aoml.noaa.gov/
erddap/griddap/goes16SSThourly.html.

In situ radiometry
We collected Lt, Lsky, and Ed every 10 s using a set of com-

mon hyperspectral radiometers (TriOS RAMSES, Rastede DE)
that were mounted on the starboard bow of the ship. These
sensors were set for auto integration with a time range between
10 ms and 8 s. These three measurements were used to calcu-
late Lw (Eq. 1) and Rrs (Eq. 2), using a ρ of 0.028 (Mobley 1999).
The TriOS radiometers collect 256 wavelength bands at 3.3-nm
intervals within the 320–950 nm range. All in situ hyper-
spectral measurements were interpolated to 1-nm intervals. For

Fig. 3. Three measurements are needed to derive remote-sensing reflectance (Rrs) from above-water sensor measurements: total sea radiance (Lt), sky
radiance (Lsky), and downwelling irradiance (Ed). The UAS sensor viewing geometry relative to the sun and the water’s surface are optimized to collect
these measurements with the minimal amount of glare and reflected skylight (Mobley 1999; IOCCG 2019).
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comparisons between TriOS and UAS, all UAS images were aver-
aged to points and we subset TriOS data to measurements col-
lected within 15 min and 100 m of the UAS samples. When
directly comparing Rrs, 10 nm around the Altum band centers
were averaged in the TriOS data to be more comparable.

Chl a algorithm
We used the Color Index algorithm (Hu et al. 2012) for all

UAS Chl a retrievals; this algorithm is used in the NASA Chl
a retrieval for values below 0.15 mg m%3 and is appropriate for
the relatively oligotrophic environment of the Gulf Stream
(Chl a predominantly < 0.3 mg m%3). The Color Index algo-
rithm is a simple index relating the reflectance at 547 nm to a
straight line from the reflectance at 443 nm to the reflectance
at 670 nm. This approach, a conceptually simple change from
NASA’s OCx blue/green ratio (O’Reilly and Werdell 2019), is
less sensitive to instrument noise and imperfect atmospheric
correction because it includes the red band, which has negligi-
ble reflectance in oligotrophic waters (Hu et al. 2012). We did
not fine-tune this algorithm for the slightly different band

centers and spectral responses of our sensor, and therefore
expect some minor bias in derived measurements.

Imagery preprocessing
Data collected by the MicaSense sensors were radiometri-

cally calibrated to convert digital number (DN) values to total
spectral radiances (Lt) using a Python workflow provided by
MicaSense (https://github.com/micasense/imageprocessing),
based on the following equation:

Lt ¼V x, yð Þ&a1=g& DN%DNBLð Þ= teþa2y%a3teyð Þ, ð3Þ

where the dark pixel value (DNBL), sensor gain (g), exposure
settings (te), and lens vignette effects (V(x,y)) are combined to
derive radiance of each pixel based on the measured digital
number (DN) with radiometric calibration coefficients (a1, a2,
a3) and the column and row number of the pixel (x and y,
respectively). Lens distortion effects, such as band-to-band
image alignment, were removed from image captures by an
unwarping procedure. We converted Lt to Rrs using a

Fig. 4. An overview of the Gulf Stream front study area from ocean-observing satellites. NOAA’s GOES-16 platform describes the sea surface temperature
of the region in 1-km resolution during the primary days of this study (top row), with the UAS survey location overlaid (black). A 6-km zoom of the GOES-16
imagery illustrates the scale of the UAS survey (black) against 1-km pixels (bottom row, left); and VIIRS products describe Chl a in 1-km resolution during the
latter 2 d (bottom row, center, and right). Note that VIIRS Chl a is shown with a logarithmic color stretch given the extreme range in this area.
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calibrated reflectance panel with known reflectance (Rplaque)
that allows accurate measurement of Ed:

Ed λð Þ¼L λð Þ* π=Rplaque λð Þ: ð4Þ

We then normalized other measurements of L to Rrs using
Ed (Eq. 2).

Skylight-blocked approach
We measured Lw* with the SBA by mounting a Micasense

RedEdge multispectral camera on a 1.5-m long, 10-cm diame-
ter black tube (Supporting Information Fig. S1). The optical
characteristics of the Micasense RedEdge are the same as the
Altum, except that it does not feature a thermal sensor. We
captured images with this sensor while placing the open end
of the tube into the water and holding the opening just below
the surface to bypass surface reflections. We then measured
pixels from the section of the image that represented the end
of the tube, since most of each image consisted of the tube
itself. We averaged the spectra from these pixels to measure
LW*. We measured Rplaque with the RedEdge sensor at the
same time as the Altum sensor, using the same plaque.

Removal of surface reflection and sun glint
We implemented a sequence of processing steps to accu-

rately derive Lw and resolve spatial patterns across an individ-
ual image, which otherwise could be biased and obscured by
reflected skylight, due to the dependency of reflected skylight
on viewing geometry (Fig. 5). Our approach uses Lw* from our
SBA measurement and Lt from images collected by the UAS at
the same time and location where Lw* was measured. Using
the assumption that Lw* is the correct Lw for each pixel in the
co-located Lt image set (ignoring the viewing angle depen-
dence of Lw), and the assumption that the sky conditions did
not change substantially during the flight, we averaged a set
of at least 10–20 Lt images over the same location, smoothed
this result using a 45 & 45-pixel gaussian window, and then
subtracted the Lw* value from each pixel (Eq. 5) to get the
value of ρ & Lsky (i.e., Lsr, Fig. 5).

ρ&Lsky ¼Lt –Lw
*: ð5Þ

Having calculated this correction factor at each pixel, for the
images throughout the flight we subtract the correction matrix
from the Lt image to obtain Lw for each pixel.

Lw ¼Lt%ρ&Lsky: ð6Þ

We applied a threshold of 2& the standard deviation of the
image pixels greater than the median Lw values to mask out
extreme values representing sun glint. We selected this thresh-
old empirically and evaluated its success visually, finding that
it appears to remove nearly all sun glint.

Comparison of viewing geometries
We compared different viewing geometries to estimate a

suitable compromise between near-nadir angles that receive
high amounts of sun glint and further off-nadir angles that
receive high amounts of reflected skylight off the surface and
oblique wave facets. We tested the effects of different geome-
tries on measured reflectance by (1) sampling different regions
of image data from a wide-FOV sensor (Fig. 6), and (2) permut-
ing our viewing angles through different gimbal pitches, cen-
tering the sensor view vertically from 0! to 40! off-nadir, and
different aircraft yaws, centering the sensor view horizontally
from 90! to 180! off-azimuth from the sun (Fig. 7).

Comparison of Chl a measurements
We compared our measurements of Chl a from UAS images

to both in situ measurements and measurements from
satellite-imagery (Fig. 11). To compare image-based measure-
ments from our wide-FOV sensor to single-value Chl
a measurements, we used the median value of each band in
the image and plotted this value at the location of the center
pixel in each UAS image. Given the rapid flow of the Gulf
Stream in situ measurements collected within 15-min and
1.5 km of a UAS image were used. When comparing measure-
ments from satellite imagery, we selected satellite imagery cap-
tured at the closest time available to our survey, and we used
the values of the pixels that overlapped our measurement
points. This did lead to time differences of up to 4 h (max 4 h
for MODIS, max 3.5 h for VIIRS, max 2 h for OLCI) though
on average the difference in time was around 2 h.

Uncertainty analysis
We measured the uncertainty of these single-point UAS

measurements by flying a short variance estimating mission to
obtain replicate measurements over the same parcel of water.
During a period of consistent environmental conditions with
low wind (< 2 m s%1), no cloud cover, and 2 km away from
the front we placed the UAS in a stationary flight for 2 min,
while imaging the same footprint of water every 1.5 s;
resulting single-point UAS measurements were assumed to
describe uncertainty in the measurement approach and not
changes in the measured Rrs values, and we report this uncer-
tainty as the standard deviation of those replicate measure-
ments. We then propagated this uncertainty in Rrs to retrieved
Chl a using linear error propagation (Taylor 1996). We com-
pared this uncertainty to TriOS radiometric measurements
sampled while the R/V floated passively with a parcel of water.
We also conducted duplicate survey flights along the same
flight paths, 10–15 min apart, for five flights to verify approxi-
mate measurement uncertainty across repeat surveys—
expecting some additional variability due to the movement of
water between duplicates. While these two approaches to
uncertainty estimation are relatively specific for the sky and
sea conditions during collection, they provide a general mag-
nitude of the full workflow variability in moderately good
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conditions where there is low wind < 5 m s%1, minor cloud
cover or fully cloud covered, and sun > 20! off the zenith.

Assessment
Our methodology was able to provide repeatable and

accurate measurements of ocean color with a reasonable
uncertainty that could be implemented by a wide variety
of aquatic scientists. Using this methodology, we surveyed
ocean color across the Gulf Stream at fine-scale; these
surveys described variability and frontal features occurring

at spatial scales too large to be captured by in situ mea-
surements and too fine to be resolved in satellite imagery.
Measurements from in situ sampling and satellite
imagery validated our UAS measurements and correction
process.

Influence of viewing geometry on measurements
As viewing angle increased off-nadir within an image,

reflectance increased across all image regions, and this rate of
increase was spectrally variable (Fig. 6). Blue radiance increased
proportionally more than green radiance at higher viewing

Fig. 5. The sequence of data processing steps needed to derive ρ & Lsky (i.e., Lsr) and Lw from a wide-FOV image sensor, here using an example image of
the green band, Lt(560 nm), taken by a UAS at 100 m altitude with a viewing geometry of φ = 135! and θ = 25!, yielding a spatial footprint of
' 80 & 60 m. All variables here (Lt, Lsky, Lw, and ρ) are spectral, and in this figure refer to the green band at 560 nm. Given an unprocessed image (A),
waves are removed by taking median pixel values from 10 to 20 images of the same area (B), which are then smoothed using a 45 & 45 pixel window
(C). From this smoothed median Lt (C,D), we subtract the SBA measurement of Lw* (E), according to Eq. 5, yielding the surface reflected light (ρ & Lsky)
across all image locations (F). From the original images (e.g., A, G), we then subtract these ρ & Lsky values (F,H), according to Eq. 6, yielding estimates of
Lw across each image (I). While not a part of the workflow, the derived ρ & Lsky image (F,H,J) can be divided by a measurement of Lsky (K) to show
image-wide estimates of ρ (L) which range well beyond the commonly used value of 0.028.
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angles. If not accurately corrected for in the calculation of Lw,
this could negatively bias Chl a estimates from a band-ratio
algorithm using measurements at these angles. This effect of
viewing angle manifests within single images, where a wide-
FOV sensor captures surface reflections from a range of viewing

angles (Fig. 6), and in the directed viewing geometry of the
sensor on its gimbal mount (Fig. 7).

We confirmed that a viewing geometry with φ of 135!–180!

relative to the sun and θ of 10–30! off-nadir is ideal, but a
higher angle off-nadir may be appropriate at times to reduce

Fig. 6. Effects of viewing angle and FOV on measurements of Lt compared to Lw. Regional subsamples from a single image, representing different view-
ing angles (A–D) and different fields of view (E–H), illustrate how these sampling choices affect reflectance. As viewing angle increases off-nadir, Lt
increases across the spectrum at spectrally variable rates (B), contributing angle-dependent biases to the green : blue ratio (dashed line in B). This change
in minimal in the Lw measurements (D) until the very highest angle off nadir ' 60! where either obliquely viewing wave facets or actual changes in water
content appear to drive a minor change in the ratio. As FOV increases radially, the radially averaged Lt (F) shows only marginal increases that appear spec-
trally consistent which is similar to Lw (H).
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glint from a high solar elevation, high wind speeds, or to avoid
self-shading, if this is a concern. Conversely, under conditions
with minimal sun glint—low solar elevation, low wind speed,
fully overcast—a θ closer to nadir can minimize capture of
reflected skylight.

Reflected skylight removal method
Our method for removing reflected skylight (Fig. 5) appears

to successfully align our measured spectra values with
expected values, yielding Rrs (NIR) near 0 for our pelagic mea-
surements (Supporting Information Fig. S2) and matching
closely with our validation measurements (Fig. 10). The Rrs

derived from our reflected skylight removal and workflow is
slightly lower than TriOS and VIIRS measurements, possibly
from a more complete removal of reflected skylight. In this
comparison (Fig. 10), it should be noted for TriOS data the
reflected skylight corrected used the Mobley (1999) approach
and a NIR subtraction, so the NIR bands are forced to be effec-
tively zero and thus UAS data are 2.5 times higher in the NIR.
Our method for removing reflected skylight also reveals fea-
tures that occur in all parts of an image (Figs. 8, 9) and yields
an image-wide distribution of measured values that more
closely approximate the Gaussian distribution that is expected
for small random wave impacts on the data (Supporting Infor-
mation Fig. S3).

Comparison to in situ and satellite measurements
Our corrected UAS measurements of Rrs closely matched

measurements from TriOS and VIIRS satellite data (Fig. 10).
Between these techniques, VIIRS yielded greater differences
from UAS measurements, which we attribute to the difference
of spatial scale that each sample described. Derived Chl
a measurements also closely matched to measurements from
VIIRS, MODIS, and OLCI satellite data, but with some offset
in the retrieved values and deviations from a 1 : 1 linear rela-
tionship (Fig. 11). OLCI data had the best linear relationship
with UAS measurements, as judged by R2, and notably this
product featured the highest spatial resolution of the three
considered (OLCI 300 m, VIIRS 750 m, and MODIS 1000 m)
and had the closest match in time to the UAS flights (' 1 h
difference on average as opposed to ' 2), though the UAS did
have an underestimation compared to OLCI. VIIRS data com-
pared to UAS had the lowest mean absolute percentage
error (MAPE).

Uncertainty in measurements and Chl a
The uncertainty of our UAS Rrs measurements from this

method was 1.5% (475 nm), 0.97% (560 nm), 6.7% (668 nm),
8.4% (717 nm), and 23% (842 nm) of the total Rrs (Supporting
Information Fig. S5). When propagated through the Chl
a algorithm (Hu et al. 2012), this yields 0.17 ) 0.0034 mg m%3

Fig. 7. An array of different combinations of viewing angle off nadir (θ) and azimuth angle relative to the sun (φ), illustrating how viewing geometry
affects the amounts of glint and reflected skylight that are captured by an airborne wide-FOV sensor. Survey conditions consisted of 100% clear sky,
minor haze on the horizon and the sun at 105! azimuth and 35! elevation. Optimal viewing geometry was achieved at yaw angles of 135–180! with
pitch angles of 10!–30! (gray background box), yielding the smallest and most uniform effects of reflected skylight. Images were collected by a
Micasense Altum and show Lt(475).
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Chl a, or an uncertainty of 1.9% of the mean. Rrs measure-
ments from UAS had substantially lower uncertainty than
measurements from our ship-based TriOS (Supporting Infor-
mation Fig. S5) which should be interpreted largely as a prod-
uct of the UAS gimbal holding a fixed viewing geometry
rather than a difference in sensor capabilities or our skylight
reflection approach. The equivalent uncertainty in blue
(475 nm), green (560 nm), and red (668 nm) bands from the
TriOS was 5%, 6%, and 10% of the mean, respectively. When
propagated to Chl a, this led to an uncertainty at 20% of
the mean.

Identical duplicate flight paths (n = 5) yielded uncertainty
estimates close to the value calculated from stationary mea-
surements () 0.000085 or 1.5% difference from the mean),
though differences between duplicates ranged up to 3%, twice
our estimated uncertainty (Supporting Information Fig. S6).

To complement our uncertainty calculations with a more
broadly used metric, we calculated the signal-to-noise ratio
(SNR) of a single image via the mean divided by the standard
deviation. This was done over a consistent area of ocean water

and for 55 images (the same data reported in Supporting Infor-
mation Fig. S5) the averaged spectral SNR was 1.25 (475 nm),
0.57 (560 nm), 0.28 (668 nm), 0.28 (717 nm), and 0.25
(842 nm). Once each image was averaged to a single point and
SNR was calculated from the 55 point samples (via the mean
of the points over their standard deviation) SNR = 111.17
(475 nm), 35.07 (560 nm), 23.22 (668 nm), 18.08 (717 nm),
17.80 (842 nm). In another test where a large calibration
plaque took up a 175 & 175 pixel component of the image
during flight, the pixelwise SNR of that plaque was > 60 per
band for 40 images, indicating that while the sensor SNR is
not extremely high, most of the noise is from the environ-
ment and that this environmental noise is substantial. This
also demonstrates that averaging each image to a single point
substantially increases the SNR as expected.

Gulf Stream frontal mapping
UAS surveys of Chl a at the Gulf Stream front off North

Carolina clearly describe the frontal boundary, smaller areas of
Chl a enhancement, and continuous variability extending

Fig. 8. Example measurements of Lt (top row) and Lw (bottom row) derived from our method for removing reflected skylight using an image of an estu-
arine environment. The image was taken from a viewing geometry centered at 40! off-nadir with 100% clear sky on 04 March 2021.

11

Gray et al. Robust ocean color from drones



offshore (Fig. 12). Structuring of sargasso and breaking waves
are visible in RGB-composite images collected at the front
(Supporting Information Fig. S7). Substantial variability is

present among Chl a measurements from UAS imagery, occur-
ring within the spatial scale of a single pixel of VIIRS imagery
(Fig. 13).

Fig. 9. Example measurements of Lt (top row) and Lw (bottom row) derived from our method for removing reflected skylight using an image of a
pelagic environment. The image was taken from a viewing geometry centered at 25! off-nadir with 100% clear sky on 27 August 2021.

Fig. 10. Comparisons between Rrs measurements from our UAS survey and TriOS samples (left, purple) and images from VIIRS (center and right, blue).
The ratio of UAS to TriOS and VIIRS Rrs is shown in the red dashed line with the gray dashed line representing unity. TriOS data were collected within
15 min and 100 m of the UAS data. VIIRS data represent pixels that overlapped with our UAS data. VIIRS images were captured within 75 min of the
UAS data.
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Discussion
The results of this study reveal that UAS-based sampling of

ocean color is a robust and maturing technique for observing
fine-scale patterns in a rapidly moving environment. Amid ongo-
ing advancements to the technology, multi-UAS fleets and inte-
grated sorties may capture even larger domains of observation in
closer synchrony—though such methods would more critically
require precise calibration and management of uncertainty.

Proper viewing geometry critically affects ocean color mea-
surements from a UAS-borne sensor, and there is a tradeoff

between solar glint and reflected skylight. As its pitch angle
is increased off-nadir, a sensor captures less solar glint but
more reflected skylight (Figs. 6, 7). During 100% cloud-
covered conditions or sun elevations < 30! above the hori-
zon, glint is minor, and a sensor can effectively pitch to nadir
and minimize reflected skylight. In typical midday condi-
tions with a sun elevation angle > 45!, glint disrupts mea-
surements, and thus 25! off-nadir—25! ) 20! with a sensor
with a vertical FOV of ' 40!—approaches an ideal middle-
ground, capturing the majority of the image from a zone

Fig. 12. Two UAS surveys, on 27 August 2021 and 28 August 2021, capturing Chl a gradients at the Gulf Stream front (red dashed line) and some
smaller regions of higher productivity.

Fig. 11. Match-ups between Chl a measurements derived from UAS imagery (n = 934 images), VIIRS imagery (n = 20 pixels), MODIS imagery (n = 24
pixels), OCLI imagery (n = 19 pixels) and in situ (extracted and read on fluorometer) data (n = 20 samples). Data show roughly linear relationships
though with some bias and spread as might be expected from different Chl a algorithms and slight differences in spatial scale and time mismatch
between methods. Coefficient of determination (R2) and MAPE are reported above each plot. Map of the UAS and in situ data overlaid on OLCI available
in Supporting Information Fig. S4.
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with reduced glint and low skylight reflection (Fig. 7). With a
wide-FOV sensor, a pitch angle centered above 25! off-nadir
drastically increases reflected skylight in the top of the image
and is so oblique that wave facets become much more visible.
This understanding matches well Mobley’s findings (1999)
that captured sky reflection increases substantially as sensor
viewing angle increases from 60! off-nadir and upward. This
can be seen in our back-calculated ρ values (Fig. 5L) where ρ
varies from just below the modeled value of 0.028 to a factor
of 2–3 higher near 60! off-nadir. When examining different
yaw angles, we did not find a substantial difference between
135! and 180! off-azimuth from the sun (Fig. 7). In a clear
pelagic environment, the sun beam pattern within the water
radiates outward from 180! opposite the sun and can disrupt
measurements (Fig. 9). This noise (e.g., sun beams within the
water column) challenges observations of within image pat-
terns and may limit some of the benefits of an imager vs a
point radiometer in pelagic environments. We detected no
noticeable UAS shadow in imagery, even at 180! off-azimuth
from the sun. These findings agree with recent work using
wide-FOV hyperspectral imagers, which showed that Lt and
Lsky depend upon viewing geometry, wind speed, and FOV
(Carrizo et al. 2019).

Should a workflow use consistent viewing geometry out of
convenience or necessity, we recommend ' 25! off-nadir and
180! off-azimuth from the sun. Our surveys employed a 135!

azimuthal angle to avoid a possible anthelion (sundog opposite
the sun) in the imagery. In estuarine environments or on fully

overcast days, this is an unlikely concern, and 180! off-azimuth
is likely preferable to reduce glint and variation across the
image. We suggest that UAS without a gimbal can still collect
robust ocean color measurements if the sensor is mounted at a
fixed pitch angle of ' 25! off-nadir, with a fixed heading to
maintain the yaw angle. The absence of a gimbal introduces
more variance into the sensor’s viewing geometry, being teth-
ered to the aircraft’s pitch and roll movements amid varying
flight speeds and wind; this would contribute more uncertainty
to measurements, but such a fixed optimal viewing geometry
still reduces glint and reflected skylight relative to a sensor ori-
entation at nadir. In the simplest case where a sensor is inte-
grated onto a UAS in a fixed nadir orientation, we recommend
avoiding survey times near solar noon to reduce specular glint
and otherwise following the procedures of this study. We
believe this constitutes a useful, practical solution for many UAS
practitioners to make reasonable ocean color measurements.

Our procedure for removing skylight reflection (Fig. 5) suc-
cessfully allowed us to visualize and measure features within
an image that would otherwise be obscured by reflected sky-
light (Fig. 8), yielding Rrs values near those of conventional
techniques (TriOS) and satellite sensors (Figs. 10, 11). The one
comparison that is poorest (28 August VIIRS) is well matched
spatially but was directly on the front and in the time between
the VIIRS acquisition and UAS survey the front was moving
southeast, thus the VIIRS image (taken earlier) was more
pelagic and thus bluer. It is also worth noting that within our
Chl a comparison, given the use of the Color Index algorithm

Fig. 13. Measured Chl a values from UAS imagery (red–blue color ramp) overlaid on Chl a values from VIIRS imagery (yellow–violet color ramp), describ-
ing Chl a around the Gulf Stream front off North Carolina. Separate color ramps illustrate the different ranges and resolved variability of Chl a measured
by each platform.
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our Chl a retrievals may be saturating at higher values
(> 0.15 mg m%3) and thus the relationship may not be
completely linear (Fig. 11). Our SBA-based skylight reflection
removal approach reduced the skew of the distribution of
measured Rrs within an image to a roughly normal distribu-
tion (Supporting Information Fig. S3). The remaining variabil-
ity matches what would be expected due to wave facets,
which are not corrected for in this work. Accurate Rrs from a
wide-FOV sensor, combined with latitude, longitude, yaw,
pitch, and roll of the sensor, may soon enable ultra-high-
resolution mosaics of the water surface that are not typically
possible from common UAS structure-from-motion methods
(Westoby et al. 2012) due to the absence of persistent key
points in aquatic imagery.

Our UAS measurements entail considerable uncertainty
(Supporting Information Figs. S5, S6) from various sources of
noise in the environment and sensor. Uncertainty from the
sensor is likely higher due to the small signal coming from the
water—which likely occurred near the bottom of our sensor’s
sensitivity range given that it was designed for terrestrial tar-
gets with one to two orders of magnitude higher radiances.
We successfully achieved repeat Rrs in the blue and green spec-
tral region < 5% of the measurement, in line with goals from
the IOCCG (2019). Uncertainty in Chl a due to Rrs was calcu-
lated as 1.9%, and while the actual Chl a uncertainty is cer-
tainly higher, this is an estimate of the uncertainty
contribution from the ocean color measurement itself. In
comparison to the ship-based TriOS, which was moving
through a range of viewing geometries due to waves, UAS
uncertainty is substantially lower, primarily demonstrating
the benefit of a gimbal and fixed viewing geometry rather
than differences in instruments. Uncertainty constitutes criti-
cal information that must accompany optical measurements:
many valuable data products and proxies can be derived from
optical observations but require proper calculation and propa-
gation of uncertainty through retrieval algorithms to enable
useful oceanographic interpretation.

Across the Gulf Stream front there is a major step-change
in temperature, Chl a and other oceanographic properties that
are shown by satellite and in situ measurements, occurring
over the span of a few dozen meters, which may not be well
described by kilometer-scale satellite imagery or model prod-
ucts. Fine-scale sargassum patterns may provide well-
structured habitat for zooplankton and larger fauna, and at
times appear to be structured by Langmuir cells (personal
observation). The variability that we describe within a 1-km
pixel footprint (Fig. 12) has been discussed previously (Moses
et al. 2016), but these findings add to the growing body of
work suggesting important submesoscale dynamics structure
the biogeochemistry around frontal features.

Assumptions
Our procedure for removing reflected skylight entails two

major assumptions: (1) that Lw* is representative of the

smoothed average of the stationary image series that is taken
nearby and (2) that sky and wind conditions stay the same
during the length of the flight. The first assumption may not
hold if the initial image set has persistent features that remain
after averaging and smoothing, or if the image set was cap-
tured too far from the site where its estimate is being applied.
The second assumption could easily be violated by a rapid
change in weather, atmospheric conditions, or sea state.
However, many UAS surveys occur over limited spans of time
and space, so this assumption should often hold for such
applications. Our approach for removing sun glint assumes
that glint can be resolved by the sensor and does not contrib-
ute radiance to other pixels; this appears to be the case in our
study, which resolved centimeter-scale resolutions.

Our empirical estimation of uncertainty likely represents a
baseline. We assumed that the standard deviation of Rrs is a
proper representation of uncertainty, and that the short period
that was used to calculate standard deviation is representative
of other periods of data collection. In this case, our estimation
may be reasonable for similar instruments, sky conditions,
water conditions, and sea state, but is not applicable to other
water bodies, wind speeds, sky conditions, and instruments.

We expected that a wide-FOV image sensor would provide
advantages over a point radiometer for detecting and describ-
ing spatial patterns in ocean color at the scale of a few meters
in a pelagic environment. Our findings and previous work
support this for estuarine and coastal environments (Windle
and Silsbe 2021), but our study suggests that in pelagic envi-
ronments at this spatial scale the high-frequency signal from
sun beams within the water and surface gravity waves can
overwhelm some of the variation in optical properties from
phytoplankton and other optically active constituents in the
water. This finding led us to take the median of all pixels in
each image for our analysis of the flight-long transects, which
allowed us to identify and describe features within the span of
the transects. Image-type data do convey a variety of advan-
tages in this environment over point radiometers, such as the
ability to spatially resolve sun glint that would otherwise be
more complex to remove from Lt, and to inspect the front
itself and visualize and spatially characterize the accumulation
and structuring of sargassum. But, in a pelagic environment
ultra-high-resolution images (' 5 cm) may not be quite so
advantageous over single-point measurements for ocean color
analysis. In an estuarine environment, where absorption and
backscattering are higher and vary at ultra-fine scale, high res-
olution UAS images can reveal a great deal of information con-
cerning water constituents and their spatial distribution.
Along the continuum from estuarine (Fig. 8) to pelagic (Fig. 9)
environments, the variation within in image becomes sub-
stantially less, and the ocean color signal can be obscured by
optical noise (e.g., surface waves and sun beams) both due to
less variation, and less absorption and backscattering which
fundamentally provide the ocean color signal. However, the
environmental threshold at which this obscuring occurs, and
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the scale of spatial resolution at which this becomes relevant,
was not explored in this work, nor were other methods that
may help resolve these sources of optical noise. Even in open-
ocean environments, we find that having the image-type data
conveys advantages that make it thoroughly worth collecting.

Caveats
Our method’s requirement of an in situ SBA measurement

for reflected skylight removal may not be practical in future
missions using autonomous, long endurance platforms, espe-
cially given its assumption that sky conditions and sun angle
do not change significantly during a survey. For UAS with lon-
ger endurance, it would be more appropriate to mount two
sensors to simultaneously collect Lsky and Lt and use Eq. 1 to
calculate Lw. Our described approach does not resolve the
effect of wave facets on both glint and reflected skylight; this
effect challenges many approaches, limiting the most accurate
measurements to low wind speeds (Groetsch et al. 2020).
However, image data from a wide-FOV sensor may be averaged
to potentially reduce this effect, where a narrow-FOV radiome-
ter would potentially be dominated by a few wave facets.

Early attempts at this work used the gimbal to change the
pitch of the sensor and take an Lsky image measurement once
every 10 Lt images, but this was challenged by our hardware
configuration, because our sensor was partly blocked by the
propellers when skyward, and our sensor’s firmware forced a
recalibration to integration time and gain because the Lsky
image was so much brighter than Lt images. These challenges
could be fixed by using two sensors, though this solution
entails a higher cost and payload weight.

While not a caveat of this method in particular, an issue
with the intercomparisons throughout this study, and a persis-
tent challenge in intercomparison between methods in ocean
color, was that this area was highly variable. The Gulf Stream
front is a step change that moves in space over time, and there
is substantial turbulence and micro-upwelling such that water
properties could vary substantially within a few hundreds of
meters. The current speed was 1.5 m s%1, and we attempted to
match up in situ samples in space with the UAS measurements
in the moving current, but this was quite challenging. This
applies also to the satellite imagery comparison where unless
the timing is near synchronous, the advection, upwelling, and
evolution of water properties can make intercomparisons espe-
cially noisy.

The “synopticity problem” continues to challenge oceano-
graphic research, but new tools such as UAS erode its scale
and impact. The potential contributions of a UAS method
must be placed in proper context: aerial ocean color imagery
can complement, but not fully replace, many oceanographic
data streams, and often the value of a dedicated UAS survey is
dwarfed by the scientific value and operational costs of an
underway research vessel and its many instruments. But where
small UAS can complement these operations—for example, if
a vessel is at a planned stop—a UAS survey can add a

meaningful spatial footprint and provide insight into regional
features and variability. A UAS flying a typical speed 10 m s%1

for a common flight time of 30 min can fly 18 km, a footprint
that can be deployed judiciously over a study region with a
variety of potential flight paths. The use of multiple UAS
simultaneously, of longer endurance platforms, and of new
and additional sensor payloads will all increase the scientific
return on time and investment with UAS methods. Oceano-
graphic regions of high spatiotemporal variability, such as at
fronts, eddies, and coastal areas, justify the costs of these local-
ized and rapidly deployable UAS methods more readily than
areas of low variability.

Comments and recommendations
From estuaries and coastal waters to open-ocean fronts,

eddies, and blooms, there are ocean regions that are rich with
spatiotemporally fine-scale features that unfold within pixels
of satellite imagery and beyond the ability of in situ methods
to sample synoptically. UAS can help address this blindspot
(Gray et al. 2022) if proper methods are used to calibrate mea-
surements of ocean color and constrain uncertainty from
these platforms. This work demonstrates that small UAS with
medium- to low-cost sensors can resolve fine-scale features,
even in pelagic environments, and are a useful new option in
the oceanographer’s toolkit.

As the ocean science community more broadly adopts mul-
tispectral or hyperspectral imagers and UAS, this work
(1) describes a simple in situ approach for removing reflected
skylight, a key challenge in above-water radiometry; (2) dem-
onstrates the challenges, inherent to high-resolution imaging
spectroscopy of aquatic surfaces, that are associated with myr-
iad viewing geometries; (3) constrains uncertainty of these
data in an ideal environment and propagates this to derived
Chl a measurements, and (4) demonstrates the implementa-
tion of this workflow with surveys of the Gulf Stream front.

The ocean color community needs consistent approaches
for making UAS-based radiometric measurements and a
thorough framework for recording and understanding uncer-
tainty in these measurements. It is critical that the commu-
nity converge on a small set of robust sensors, open-source
code for processing, and consistent calibration and validation
metrics in order to add these potentially gap-filling tools into
the optical oceanography toolkit. If we succeed, UAS-based
sampling of ocean color can address a heretofore inaccessible
scale that is critical for our understanding of marine
ecosystems.

Data availability statement
Data are available on the Duke Data Repository at https://

research.repository.duke.edu/ and code is available at https://
github.com/marrs-lab/drone_ocean_color.
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