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ABSTRACT
Population monitoring of colonial seabirds is often complicated by the large size of colonies, remote locations, and close 
inter- and intra-species aggregation. While drones have been successfully used to monitor large inaccessible colonies, 
the vast amount of imagery collected introduces a data analysis bottleneck. Convolutional neural networks (CNN) are 
evolving as a prominent means for object detection and can be applied to drone imagery for population monitoring. In 
this study, we explored the use of these technologies to increase capabilities for seabird monitoring by using CNNs to de-
tect and enumerate Black-browed Albatrosses (Thalassarche melanophris) and Southern Rockhopper Penguins (Eudyptes 
c. chrysocome) at one of their largest breeding colonies, the Falkland (Malvinas) Islands. Our results showed that these 
techniques have great potential for seabird monitoring at significant and spatially complex colonies, producing accur-
acies of correctly detecting and counting birds at 97.66% (Black-browed Albatrosses) and 87.16% (Southern Rockhopper 
Penguins), with 90% of automated counts being within 5% of manual counts from imagery. The results of this study in-
dicate CNN methods are a viable population assessment tool, providing opportunities to reduce manual labor, cost, and 
human error.

Keywords: Black-browed Albatross, convolutional neural network, deep learning, drone, population assessment, 
seabird monitoring, Southern Rockhopper Penguin

Los drones y el aprendizaje profundo producen un monitoreo preciso y eficiente de colonias de aves 
marinas de gran escala

RESUMEN
El monitoreo de las poblaciones de aves marinas coloniales es usualmente complicado por el gran tamaño de las 
colonias, los lugares remotos y la agregación densa inter- e intra-específica. Mientras que los drones han sido usados 
exitosamente para monitorear grandes colonias inaccesibles, la gran cantidad de imágenes colectadas introduce un 
cuello de botella en el análisis de los datos. Las redes neuronales convolucionales (RNC) están evolucionando como 
un medio prominente para la detección de objetos y pueden ser aplicadas a las imágenes de drones para el monitoreo 
poblacional. En este estudio, exploramos el uso de estas tecnologías para aumentar la capacidad de monitoreo de las 

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is  
properly cited.

LAY SUMMARY

	•	 We tested the viability of using deep learning coupled with drone imagery to monitor Black-browed Albatrosses and 
Southern Rockhopper Penguins.

	•	 Many seabird colonies at the Falkland (Malvinas) Islands are large and remote, presenting challenges for long-term 
monitoring.

	•	 We used convolutional neural networks to enumerate both species from drone imagery and compared automated 
counts to manual counts.

	•	 Our results produced high accuracies and low percent difference with manual counts.
	•	 Deep learning coupled with drone imagery shows great potential for the future of seabird monitoring, particularly in 

large and spatially complex colonies.
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aves silvestres mediante el uso de RNC para detectar y contar a Thalassarche melanophris y Eudyptes c. chrysocome en 
una de sus colonias de cría más grandes, las Islas Malvinas. Nuestros resultados mostraron que estas técnicas tienen 
gran potencial para el monitoreo de aves marinas en colonias significativas y espacialmente complejas, produciendo 
precisiones para detectar y contar correctamente las aves en un 97.66% (T. melanophris) y 87.16% (E. c. chrysocome), con 
un 90% de los conteos automáticos estando dentro del 5% de los conteos manuales realizados a partir de las imágenes. 
Los resultados de este estudio indican que los métodos de RNC son una herramienta viable de evaluación poblacional, 
brindando oportunidades para reducir el trabajo manual, el costo y el error humano.

Palabras clave: aprendizaje profundo, drone, Eudyptes c. chrysocome, evaluación poblacional, monitoreo de aves 
marinas, red neuronal convolucional, Thalassarche melanophris

INTRODUCTION

Accurate wildlife population assessments are crucial for 
effective conservation and ecosystem management, par-
ticularly of focal species whose abundance can indicate the 
condition of the more complex community (Zacharias and 
Roff 2001). Seabird population dynamics have proven to 
be successful indicators of ecological change due to tightly 
coupled dependence on oceanographic conditions and 
key roles as marine predators (Diamond and Devlin 2003, 
Hazen et  al. 2019). Seabird populations are sensitive to 
environmental change across spatial and temporal scales, 
and specifically vulnerable to anthropogenic stressors like 
climate change and fisheries competition and bycatch 
(Bost and LeMaho 1993, Croxall et  al. 2012). Colonial 
seabirds can be more easily monitored than many other 
marine megafauna species, and many long-term studies 
have linked changes in seabird demographic parameters 
to several threats including the effects of climate change 
on marine ecosystems (Barbraud and Weimerskirch 2001, 
Weimerskirch et al. 2003). Yet, many seabird species often 
breed in large numbers at inaccessible locations closely 
aggregated together, sometimes with other species, pre-
senting challenges for traditional ground-based surveys 
(Rush et al. 2018).

Unoccupied aircraft systems (UAS) or drones are a 
rapidly evolving technology that has been successfully 
used for surveying a variety of marine species, including 
cetaceans (Aniceto et  al. 2018), dugongs (Hodgson et  al. 
2013), seals (Seymour et  al. 2017), and seabirds (Chabot 
et al. 2015, Rush et al. 2018). These surveys can often be 
completed with consumer, off-the-shelf (COTS) drones 
that are relatively inexpensive yet collect high spatial and 
temporal resolution imagery (Linchant et  al. 2015). The 
use of drones to monitor seabird colonies, when com-
pared to ground counting methods, can significantly in-
crease the total colony areas surveyed, increase accuracy 
of counts, reduce direct disturbance and are a viable op-
tion for long-term monitoring, but the amount of data col-
lected can introduce a data analysis bottleneck as manual 
counting of wildlife is labor-intensive (Lyons et al. 2019).

Automated counting of avifauna from aerial im-
agery has been effectively applied to many different spe-
cies and locations (Abd-Elrahman et  al. 2005, Descamps 

et al. 2011, Groom et al. 2011, Ratcliffe et al. 2015). Many 
computer-automated approaches have focused on spectral 
thresholding, object-based image analysis, and traditional 
supervised machine learning, although these methods do 
not work well if there are multiple species present in im-
agery and have been most successfully applied to smaller 
colonies (Chabot and Francis 2016, Hong et al. 2019).

Unlike traditional supervised machine learning ap-
proaches, supervised deep learning algorithms, also called 
neural networks, can effectively learn representative fea-
tures directly from data with a practitioner only providing 
the training labels (Akçay et  al. 2020). Once trained, a 
network can then extract similar features from new un-
seen data for classification and regression problems. Most 
recent advances are from convolutional neural networks 
(CNN), which ingest imagery and iteratively scan with 
a series of learned filters (the convolutional layers) that 
transform the input data into higher-level features repre-
senting aspects that are important for the task the CNN 
is being trained to do (LeCun et al. 2015). Once learned, 
these filters help the CNN detect relevant features in pre-
viously unseen imagery despite changes in lighting, layout, 
or exact geometry. CNNs are increasingly important tools 
in remote sensing and ecology because the convolutional 
layers incorporate spatial context, which helps identify 
relevant ecological patterns and processes (Brodrick et al. 
2019). CNNs are particularly useful for object detection 
and, from there, automated enumeration of wildlife.

CNN-based object detection is a rapidly growing re-
search area and numerous methods have proven successful 
in studies to count wildlife in drone imagery. For example, 
Gray et al. (2019) used a CNN to automate species identi-
fication and measurement of cetaceans in drone imagery, 
finding that the CNN correctly predicted whale species in 
98% of images. Borowicz et  al. (2018) used a neural net-
work to detect Adélie Penguins (Pygoscelis adeliae) in 
drone imagery within 10% accuracy of ground counts, re-
sulting in the discovery of a new Adélie Penguin hotspot. 
Furthermore, Gray et al. (2018) used a CNN to detect sea 
turtles in drone imagery, finding that the model reduced 
manual analysis burden to 1.5% of the initial amount of 
time required to manually count sea turtles. While deep 
learning and drones show great promise for the future of 
wildlife monitoring, there are still ecological and technical 
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limitations. Some species may be too small or elusive, a 
drone may introduce disturbance, and standard drone 
sensor visibility can be limited in both marine and terres-
trial environments (Johnston 2019).

The Falkland (Malvinas) Islands are home to the world’s 
largest colonies of Black-browed Albatrosses (Thalassarche 
melanophris) and the second largest colonies of Southern 
Rockhopper Penguins (Eudyptes c.  chrysocome) (Baylis 
2012). Accordingly, the conservation status of both spe-
cies is dependent on local population trends. Since 1990, 
the Falkland Islands Seabird Monitoring Programme has 
been monitoring Black-browed Albatrosses and Southern 
Rockhopper Penguins annually at select colonies, with an 
archipelago-wide census conducted every 5  years until 
2010, when it was shifted to species-specific censuses 
(Crofts and Stanworth 2019). The results of the 2015 Black-
browed Albatross census are still being analyzed.

The Black-browed Albatross, classified as Least Concern 
(LC) by the International Union for Conservation of 
Nature’s (IUCN) Red List of Threatened Species, breeds 
at 12 distinct sites in the Falkland Islands, with the lar-
gest colony on Steeple Jason Island. The census in 2010 
estimated between 474,000 and 535,000 breeding pairs 
across the entire Falkland Islands (Wolfaardt 2012). 
Approximately 0.5% of the breeding population is moni-
tored annually (Crofts and Stanworth 2019). Aerial sur-
veys from occupied aircraft and ground-based surveys 
have been used independently to complete and compare 
archipelago-wide censuses. Traditional ground-based field 
counts and counts from images, including drones, were 
most recently used for the annual surveys at Steeple Jason, 
with 10% of the annually monitored population counted 
with photographs (Crofts and Stanworth 2019). Census re-
sults suggest that the population numbers were increasing 
between 2000 and 2010, which may have reflected the on-
going efforts to reduce incidental seabird bycatch in the 
Falkland Islands and other regional fisheries (Moreno et al. 
2008, Wolfaardt 2012).

Similar to Black-browed Albatrosses, the largest colony 
in the Falkland Islands of Southern Rockhopper Penguins, 
classified as Vulnerable (VU) by IUCN, is on Steeple Jason 
Island (Baylis 2012). The most recent complete survey 
utilized traditional ground-based field counts and photo-
graphic counts to estimate 319,000 breeding pairs at the 
Falkland Islands. Approximately 2.6% of this population 
is monitored annually and these surveys are conducted 
with traditional ground-based field counts and aerial im-
agery including, more recently, drone counts (Crofts and 
Stanworth 2019). The 5 sub-colony areas surveyed in 2019 
using drone counts correspond to about half of the total 
estimated colony area. Archipelago-wide censuses in 2000 
and 2005 estimated a steep decline in the breeding popu-
lation, but the most recent 2010 census indicated a 50.6% 
increase in breeding pairs between 2005 and 2010 (Baylis 

et al. 2013). Southern Rockhopper Penguin populations are 
threatened by the effects of changing sea surface temper-
atures that influence their prey abundance and availability, 
as well as the impact of oil pollution at sea (Pütz et al. 2002, 
Dehnhard et  al. 2013). A  starvation event was identified 
as the possible cause (Morgenthaler et al. 2018) of a drop 
of 31% in the annually monitored breeding population in 
2016 (Crofts and Stanworth 2017).

While annually monitored sites for both Black-browed 
Albatrosses and Southern Rockhopper Penguins account 
for a small portion of total Falkland Islands populations 
of both species, they are designed to detect finer reso-
lution population fluctuations at selected sites to represent 
changes for the Falkland Islands as a whole (Baylis 2012). 
Archipelago-wide censuses, carried out less frequently, 
are used to assess overall population abundances and cor-
roborate any significant population trends detected in the 
annual surveys (Huin and Reid 2006). Combined, both 
selected site surveys and larger archipelago censuses are 
critical components to understand the species population 
dynamics on a long-term scale, however, logistical limita-
tions and associated costs can be a tradeoff between the 
level of survey effort and survey frequency, particularly 
for large, remote, and numerously widespread colonies, 
such as those on the Falkland Islands (Wolfaardt 2012). 
Incorporating newer technologies such as drones and 
automated counting can significantly advance effective 
seabird monitoring at the Falkland Islands.

The purposes of the present study were to (1) collect 
population assessment quality drone imagery of all the 
known colonies of Black-browed Albatrosses and Southern 
Rockhopper Penguins at Steeple and Grand Jason Islands, 
(2) build and train deep learning models to detect and enu-
merate individuals of both species in drone imagery, and 
(3) deploy these models and evaluate accuracy to develop 
a cost-effective method for seabird colony monitoring of 
both species in a conservation stronghold habitat.

METHODS

Study Area
Drone surveys at both albatross and penguin colonies were 
focused on Steeple Jason Island and Grand Jason Island 
in the Falkland (Malvinas) Islands (Figure 1). The Jason 
Islands are located north-west of West Falkland (51.077°S, 
60.969°W) and their coastlines consist of rocky shores and 
steep cliffs rising to tussock grass-covered slopes. Black-
browed Albatrosses and Southern Rockhopper Penguins 
arrive at these islands to lay eggs in early October and 
early November, respectively (Baylis 2012). Black-browed 
Albatross nests are built with mud and guano, whereas 
Southern Rockhopper Penguin nests are ill-defined scrapes. 
Nesting sites are reused every year for both species. Based 
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on the last island-wide census of Black-browed Albatrosses 
in 2010, there were an estimated 201,986 to 214,203 
breeding pairs on Steeple Jason and 89,580 breeding pairs 
on Grand Jason (Wolfaardt 2012). Censuses of Southern 
Rockhopper Penguins at Steeple Jason estimated 121,396 
breeding pairs in 2010 and 10,496 breeding pairs at Grand 
Jason in 2005 (Baylis 2012).

UAS Imagery Collection
Aerial imagery was collected with a DJI Phantom 
(Shenzhen DJI Sciences and Technologies, Nanshan, 
Shenzhen, China), a consumer drone with a 9-mm fixed 
focal length lens, a resolution of 4,864 × 3,648 pixels, and 
a flight time of 20–25 min. This drone was used due to its 
vertical takeoff and landing capabilities in rough terrain. 
Imagery was collected between November 11 and 21, 2018 
for all but one section of the colonies on Steeple Jason. 
Imagery was collected again between November 3 and 13, 

2019 for the colony area not surveyed in 2018 on Steeple 
Jason plus 4 smaller subsets of those areas flown in 2018. 
All colony areas on Grand Jason were surveyed in 2019 
during this time. These surveys were conducted both years 
during the incubation period for both species, consistent 
with the previous timing of censuses (Wolfaardt 2012), 
where a single member of the Black-browed Albatross 
pair remains sitting on the nest and Southern Rockhopper 
Penguins are present at the nest as pairs. The 2018 imagery 
was collected at an average resolution of 5  cm pixel–1, 
whereas the 2019 imagery was collected at an average of 
1 cm pixel–1. The average flight altitude is directly related 
to the resolution and was around 90 m in 2018 and 60 m 
in 2019 but varied greatly by colony area because of the 
uneven terrain. Flight paths over all sites were conducted 
in overlapping parallel lines following predefined patterns 
set with DroneDeploy (https://www.dronedeploy.com/
product/mobile/). Flight characteristics from each colony 

FIGURE 1.  Map of the study sites at the Jason Islands. Colony names are outlined in Table 1 based on the corresponding numbers.
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area (labeled in Figure 1) are presented in Table 1. Flights 
were conducted at different altitudes to determine the 
lowest resolution threshold at which a deep learning model 
could accurately detect seabirds; training on images from 
different resolutions creates a more robust model.

Image Processing and Manual Counts
All aerial imagery was processed into orthomosaics with 
±1 m horizontal accuracy using the structure from mo-
tion software Pix4D (https://www.pix4d.com/product/
pix4dmapper-photogrammetry-software; version 4.5.6). 
Some of the survey sites presented challenges for auto-
mated stitching of images, including ghosting artifacts and 
edge effects. These orthomosaics were manually edited to 
create a clear picture of each colony area.

The CNNs must first be trained on a subset of images 
with the objects of interest manually labeled. Orthomosaics 
were split into smaller tiles and both bird species were 
manually marked using the VGG Image Annotator soft-
ware (https://www.robots.ox.ac.uk/~vgg/software/via/; 
version 3.0.8). All individual birds present of both species 
were marked regardless of body shape or position. The 
same observer analyzed all images, although it is expected 
that counts from different observers would be similar as 
the birds are relatively easy to identify. All tiles were cre-
ated with a 60-pixel overlap for Black-browed Albatross 
detection and a 30-pixel overlap for Southern Rockhopper 
Penguin detection, which were slightly above the average 
pixel size of birds in the images. It took 10 hr to manually 
label the Black-browed Albatrosses and 20 hr to manually 
label the Southern Rockhopper Penguins. All labeled tiles 
were split into 80-10-10 training data, validation data, and 
testing data (Figure 2). Training data are used to train the 
deep learning model, while the validation data are used to 
determine the stopping point of training, and the testing 
dataset of previously unseen data is used to determine 
the final accuracy of the model. Manually marking the 
training samples also provides manual counts for total site 

population, which is a useful metric to compare the per-
formance of the CNN to the “true” values.

Total Black-browed Albatross counts in the Steeple 
Jason imagery from 2018 were conducted using a density-
based estimation in ArcGIS Pro (https://www.esri.com/
en-us/arcgis/products/arcgis-pro/overview; version 
2.3.0). First, total colony areas were delineated manually. 
A  grid overlay was then used to split the total area into 
continuous 15  × 15 m quadrats. Utilizing similar tech-
niques to estimate nest densities as in the 2005 census 
(Huin and Reid 2006), 16 quadrats were selected that were 
distributed relatively evenly on each island, none of which 
are within 5 m of the edge of the colony, resulting in ~35% 
of the total colony by area surveyed. Our use of quadrat 
rows, similar to strip transects, was preferred because it 
accounts for lower densities near colony borders (Croxall 
and Prince 1979). All individual albatrosses were digitized 
in these quadrat rows and the total numbers were div-
ided by the colony area surveyed to generate an albatross 
per square meter metric. The total colony area was then 
multiplied by this metric to estimate the total count of in-
dividual albatross numbers on Steeple Jason North and 
South. Variance in the estimated number of nests for each 
colony can be calculated by the methods outlined in the 
1987 census (Thompson and Rothery 1991), but this re-
quires multiple measurements of colony area and multiple 
counts by 2 observers. We could not determine the un-
certainty in our method as the colony area was measured 
once and nests were counted once by one observer.

CNN Architecture and Training
Object detection architectures can be categorized as ei-
ther one-stage or two-stage. Two-stage architectures 
split potential objects into either foreground or back-
ground classes, and then classify all foreground objects 
into the specific classes of interest, while one-stage de-
tectors do not have this first step. Two-stage detectors are 
known to be more accurate but computationally intensive. 

TABLE 1.  Overview of flight characteristics for each colony area, numbered by site in Figure 1. Ground sampling distance (GSD) is 
related to flight height and is the distance between 2 consecutive pixels on the ground. A GSD value of 5 means that 1 pixel in the 
imagery represents 5 cm on the ground.

Colony area name Date Colony area size (km2) GSD (cm)

  1. Steeple Jason North November 13, 2018 0.17 5
  2. Steeple Jason South November 13, 2018 0.12 5
  3. Steeple Jason Bubble November 8, 2019 0.009 0.64
  4. Steeple Jason Hump November 8, 2019 0.011 0.52
  5. Steeple Jason Blob November 8, 2019 0.009 0.74
  6. Steeple Jason N Tip Gully November 9, 2019 0.14 1.20
  7. Steeple Jason South Neck November 8, 2019 0.19 1.50
  8. Grand Jason SW Right Third November 12, 2019 0.086 1.80
  9. Grand Jason SW Middle Third November 12, 2019 0.061 0.95
10. Grand Jason SW Left Third November 12, 2019 0.077 1.14
11. Grand Jason SE Blob November 10, 2019 0.014 0.48
12. Grand Jason SE Colony November 12, 2019 0.095 1.17
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Typically, a deep learning model is chosen by considering 
the tradeoff between speed and accuracy. Faster R-CNN 
(Ren et al. 2017) has remained a top choice and exceeded 
all other models on overall accuracy and ability to detect 
small objects when it was initially published but remains 
a slower model (Huang et  al. 2017). Although one-stage 
detectors like YOLO (Redmon et  al. 2016) and SSD (Liu 
et al. 2016) yield faster inference times, their accuracies are 
often 10–40% below that of two-stage detectors (Lin et al. 
2017a). The present study employed the Keras implemen-
tation (https://github.com/fizyr/keras-retinanet) of the 
one-stage RetinaNet object detection architecture with the 
ResNet-50-FPN backbone (Lin et al. 2017a) to achieve high 
accuracy without decreasing computational efficiency. 
RetinaNet was the first one-stage detector to match the 
accuracy of more complex two-stage detectors like Faster 
R-CNN and outperformed all previous one-stage and two-
stage detectors in the speed vs. accuracy tradeoff on the 
Common Objects in Context (COCO) benchmark (Lin 
et  al. 2017a). The ResNet-50-FPN backbone was chosen 
over the larger ResNet-101-FPN because it has the fastest 
runtime while achieving similar accuracy on a 500-pixel 
image scale (Lin et al. 2017a), which is the largest size of 
the tiles used in this study. It is worth noting that for many 

applied ecology problems the exact model is often of less 
importance than the quality of data, labels, and the time 
spent collecting and refining these data (Sun et  al. 2017, 
Christin et al. 2019).

Object detection problems involve both a regression of 
the corners of the bounding box around the object and a 
classification problem to decide what is in that box. Neural 
networks are trained for this task by minimizing a loss 
function. A loss function is used to evaluate how well the 
network output compares to the expected output (i.e. the 
training label). In typical classification problems, this is 
done by comparing the predictions (which are probabil-
ities between 1 and 0 that the input data belong to that 
class) to the true label (a vector where the correct class is 1 
and all others are 0). Loss is minimized when the model has 
high confidence in the correct class. For regression prob-
lems, the mean squared error between the target value 
and the predicted value is defined as the loss. Typically, 
the loss function for CNNs conducting object detection 
is defined by simply adding the classification and regres-
sion loss. When minimizing loss, the entire network can 
be thought of as a function whose input is each learnable 
parameter in the neural network (often in the millions) 
and whose output is a loss value. This is often called the 

FIGURE 2.  Overview of CNN development and deployment for Black-browed Albatross detection. The development cycle is the same 
for Southern Rockhopper Penguin detection.
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cost function. The loss function and cost function must be 
differentiable so that gradient descent can be used to min-
imize the whole cost function. Gradient descent optimizes 
the cost function by updating the training parameters, or 
weights, to step down the gradient until the lowest point 
of the function is reached. These steps down the gradient 
are calculated using the training samples. Weights are 
the learnable parameters of a deep learning model that 
transform the input image into output classifications and 
bounding boxes. In practice, stochastic gradient descent 
is often the preferred optimization algorithm as it ran-
domly selects one training sample at each iteration instead 
of calculating loss on all the training samples at each step, 
significantly reducing computations particularly in large 
datasets (Bottou 2010).

RetinaNet is able to achieve state-of-the-art perform-
ance by utilizing a concept called focal loss to rescale the 

loss function. Focal loss improves prediction accuracy by 
reshaping the classification loss to pay less attention to 
background examples (decreasing their influence in the 
loss function) and focusing on challenging foreground ex-
amples (increasing their influence in the loss function) (Lin 
et al. 2017a). RetinaNet is composed of a feature pyramid 
network (FPN) on top of a feedforward CNN architecture, 
plus 2 task-specific network branches for classification and 
bounding box regression (Figure 3). The CNN takes an 
input image and processes it through several convolutional 
filters, each outputting a feature map (Figure 3A). The fea-
ture maps of the first few layers capture high-level features, 
such as color gradients and edges, and the later layers create 
smaller but deeper feature maps that capture more abstract 
features representative of the final classes (e.g., wings, 
nest structure). The FPN combines the smaller and more 
precise feature maps with the larger more context-aware 

FIGURE 3.  Overview of the RetinaNet architecture, consisting of the backbone network and 2 subnetworks for classification and re-
gression. (A) ResNet-50, the convolutional network, generates feature maps at different scales. The spatial resolution decreases and 
the semantic value increases as it moves up the pathway. (B) The FPN feature extractor combines low-resolution, semantically strong 
features with high-resolution, semantically weak features to generate multi-scale feature maps. The top-down pathway up samples 
the spatially coarser feature maps and the lateral connections merge top-down and bottom-up layers. The default anchors, predefined 
bounding boxes used to capture the scale and aspect ratio of specific object classes, are moved around the multi-scale feature maps 
and each level of the FPN encodes information at a different scale, informing overall object detection. (C) The classification subnet is a 
fully convolutional network attached to each FPN level. The output feature map is shape (WxHxKA), where WxH is related to the input 
feature map and KA is the number of object classes and anchor boxes, respectively. Each anchor box detects the existence of objects 
from K classes. (D) The box regression subnet (class-agnostic bounding box regressor) is a fully convolutional network to each pyramid 
level that is identical to the classification subnet but terminates in 4A linear outputs per spatial location. The 4 outputs for each A an-
chor predict the relative offset between the anchor and ground truth box. 
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feature maps through several up-sampling levels (Lin 
et al. 2017b), resulting in multi-scale feature maps (Figure 
3B). At each of these levels, several “anchors” are moved 
around the feature maps. The anchors are rectangles of 
preset sizes and aspect ratios, defined by the user based 
on the expected size of the objects in the imagery, which 
act as the initial bounding boxes of predicted objects. Our 
anchors were optimized for small object detection based 
on the Zlocha et al. (2019) framework. These multi-scale 
features and anchors are then fed through 2 final branches 
made up of additional convolutions and pooling. The first 
branch is for classification which predicts the probability 
of object presence at each spatial location for each of the A 
anchors and K object classes (Figure 3C). The probability, 
or the confidence score, is simply the highest activation 
from the network’s output neurons. The output activation 
is passed through a sigmoid function which “squishes” this 
final output value for each neuron into a range of 0–1 and 
the highest value is the assigned class. The classification 
subnet implements focal loss as the loss function by down-
weighting the importance of well-classified background 
samples, preventing a large number of background sam-
ples from overwhelming the detector during training, and 
reducing the effect on model weights. The second subnet 
is the regression branch that predicts x1, y1, x2, y2 for each 
anchor (Figure 3D), makes small adjustments to the ori-
ginal anchors to fit potential objects better, and a smooth 
loss function is applied. Classification loss and regression 
loss are calculated at each epoch during training, during 
which the parameter weights are updated to minimize loss 
through stochastic gradient descent. Once trained, the 
model runs inference by selecting anchors with the highest 
predicted probability, and these anchors are given offset 
predictions to produce the final bounding box predictions.

A pre-trained version of RetinaNet was used as the 
starting point of our model weights. This model was trained 
on Microsoft COCO (Lin et  al. 2014), a dataset of over 
200,000 labeled images. Using the weights of a model pre-
trained on the COCO dataset for our initial training lever-
ages the power of transfer learning (Razavian et al. 2014), 
which assumes many of the learned convolutional filters 
will transfer across images from different domains (Kerner 
et al. 2019). Two CNNs were deployed for detection and 
enumeration of Black-browed Albatrosses and Southern 
Rockhopper Penguins using this architecture. The training 
tiles for the penguin imagery were split smaller to increase 
visibility for labeling and the tiles had different degrees of 
overlap, so the training labels were generated separately for 
both species. Due to these differences, the training labels 
could not be combined to generate a singular model, al-
though future studies could easily standardize these factors 
and create more comprehensive models.

The first CNN was trained with 945 tiles containing 
12,431 Black-browed Albatrosses from half of the colony 

areas. About 104 tiles containing 1,182 albatrosses were 
used for validation data and 116 tiles with 1,357 alba-
trosses were set aside for testing data. The second CNN 
was trained with 2,782 tiles containing 24,670 Southern 
Rockhopper Penguins from half the colony areas. 308 tiles 
with 2,610 penguins were used for validation, and 343 tiles 
with 2,720 penguins were set aside for testing data. The 
samples for training, validation, and testing were all from 
separate tiles without overlap. The training, validation, 
and testing tiles were x by y by 3 tensors (Red, Green, Blue) 
with the accompanying bounding boxes and labels classi-
fying the examples as an albatross or penguin. All tiles in 
each dataset were fully labeled with all bird instances.

Both models were trained with a batch size of 2,500 
steps, 30 epochs, and took around 3  hr each. We aug-
mented training data via minor rotation, translation, shear, 
and scaling, as well as flipping in the x- and y directions. 
Epoch 30 was used to create the model for Black-browed 
Albatross detection. Epoch 21 was used to create the 
Southern Rockhopper Penguin detection model. Using the 
validation data, it was determined that beyond epoch 21 
the model began overfitting—when a model memorizes 
the training data and is not able to generalize new data, 
which is seen in an increase in validation loss while training 
loss continues to decrease.

Model Evaluation and Deployment
To determine the performance of a model, the Intersection 
over Union (IoU), precision, and recall metrics of the 
testing dataset are used to generate a mean average pre-
cision (mAP). IoU is the intersection over the union of 
the manually created bounding box and the predicted 
bounding box from the model (Figure 4). The RetinaNet 
architecture defaults to an IoU threshold of 0.5, and this 
threshold is widely used in other studies of object detec-
tion and instance segmentation (He et al. 2017). In our ana-
lysis, we follow this practice, if the IoU is greater than 0.5, 
the object classification is considered a true positive and if 
it is less than 0.5, it is a false positive. If a manually created 
bounding box is present and the model does not detect it, 
then it is a false negative. Precision and recall are calculated 
using true positives, false positives, and false negatives, as 
seen in Equations (1) and (2). Precision is the probability 
of the predicted bounding box overlapping the ground 
truth bounding box with IoU ≥ 0.5, and high precision 
means that most detections match ground truth objects. 
Recall measures the probability of a ground truth object 
being correctly detected, and high recall means that most 
ground truth objects were detected. The F1 score, seen in 
Equation (3), is the weighted average of precision and re-
call. To optimize the F1 score, the probability threshold 
for discarding detections was kept at 0.5 for both the alba-
tross and penguin models. Average precision is calculated 
by sampling the precision-recall curve at all unique recall 
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values whenever the maximum precision value drops. The 
mAP is then calculated with the area under the precision-
recall curve and uses the weighted average of precisions 
among classes.

Precision =
True positive

True positive + false positive� (1)

Recall =
True positive

True positive + false negative� (2)

F1 = 2 × Precision × recall
Precision + recall� (3)

Due to memory constraints on modern graphics pro-
cessing units (GPUs) detections were run on tiled 
subsets of the full orthomosaics. These tiles intention-
ally had a small overlap so that if birds were cut in half by 
the tiling process, the overlap ensured an uncut bird in 
one of the images. While it helps to prevent false nega-
tives, this process often results in overlapping bounding 
boxes around the same bird. A post-processing function 
for non-max suppression, adapted from Malisiewicz 
et al. (2011), was applied to each colony area. This non-
max suppression function removes duplicate detections 
based on overlap (IoU  =  0.6) and keeps the detection 
with the highest model confidence score. As penguins 
were present in pairs, these bounding boxes had a higher 
degree of overlap. We examined a variety of IoU thresh-
olds to ensure these detections were not removed, al-
though it is likely that some penguin detections were 
eliminated by the suppression function. Detections 
were exported as shapefiles with georeferenced coord-
inates to be overlaid on each orthomosaic. They were re-
viewed in ArcGIS Pro using a fishnet of rectangular cells 
covering the extent of detections. Each grid was manu-
ally reviewed at a high zoom level (Figure 5).

RESULTS

Model Performance
The mAP for the albatross model was 97.66%, and the mAP 
for the penguin model was 87.16%. The F1 score for the 
albatross model at an IoU threshold of 0.5 and model con-
fidence threshold of 0.5 was 0.9162. The F1 score for the 
same thresholds in the penguin model was 0.8450 (Figure 
6).

There were 190,435 albatrosses detected in the Steeple 
Jason North and South 2018 imagery (colony areas 1–2), 
69,989 albatrosses in the 2019 Steeple Jason subsets (colony 
areas 3–7), and 64,074 albatrosses in the 2019 Grand Jason 
imagery (colony areas 8–12) (Table 2). As 4 of the sites col-
lected in 2019 at Steeple Jason are overlapping subsets of 
the 2018 imagery, a more representative count is achieved 
by summing the results of Steeple Jason 2018 and Steeple 
Jason South of the Neck (2019) counts. This resulted in 
204,690 individual counts at Steeple Jason, and including 
all the Grand Jason colony areas, a total of 268,764 Black-
browed Albatrosses. Although the colony areas on Steeple 
Jason appeared similar in 2018 and 2019, corroborated to 
some extent by comparing those colony areas that were 
photographed in both years, there is likely interannual 
variation in nest abundance so the summed colony-wide 
estimates should serve only as a baseline. Furthermore, in 
this study, we refer to each detected albatross as a “poten-
tial breeding individual,” recognizing that transforming 
individual counts as a proxy for population assessment 
would require further work including ground-truthing to 
determine breeding bird numbers from nonbreeding bird 
numbers as well as accounting for birds that are hidden 
from aerial view, which were not attempted in this study.

We were not able to photograph all Southern Rockhopper 
Penguin colony areas in sufficient detail to provide a total 
count; however, we were able to use CNN detection on 
those areas photographed in 2019 in which the detected 
number of penguins at Steeple Jason and Grand Jason was 

FIGURE 4.  IoU metric used to determine overlap between 2 bounding boxes. IoU of 0 indicates no overlap and IoU of 1 indicates 
complete overlap.

D
ow

nloaded from
 https://academ

ic.oup.com
/condor/article/123/3/duab022/6281065 by guest on 03 January 2025



10  M. C. Hayes et al.� Remote monitoring of large-scale seabird colonies

Ornithological Applications  123:1–16 © 2021 American Ornithological Society

68,779 (Table 3). The Steeple Jason 2018 imagery was not 
used in these detections as the resolution was too low for 
the model. This figure is the total number of individual 
penguins detected.

Comparison with Manual Counts
Compared to the full manual counts from the imagery of 
Black-browed Albatrosses in Steeple Jason colony areas, 
there was less than a 5% difference with CNN detections 
and a 7.4% difference for Grand Jason SE Blob counts 
(Table 2). For the 2018 Steeple Jason colony areas, the 
CNN detections were clipped to the same colony area 

boundary that was used for the density-based estima-
tion for ease of comparison. The manual density-based 
estimation for Steeple Jason North had a 2.0% differ-
ence with the CNN counts, whereas the estimation for 
Steeple Jason South was a 9.4% difference (Table 2). 
Manual counts for Southern Rockhopper Penguins at 
Steeple Jason Hump, Bubble, and Blob and Grand Jason 
SE Blob and SW Middle Third were all less than a 5% dif-
ference with CNN counts (Table 3).

It took 9.5 hr of analyst time to perform manual counts 
of albatrosses in 0.043 km2 of imagery, while the model 
took ~20 min to detect a similar number of albatrosses in 

FIGURE 6.  Precision recall curves for both albatross and penguin CNNs. Precision vs. recall is plotted as 11 different confidence thresh-
olds from 0 to 1.0. The red diamond indicates the highest F1 score, which is seen at a confidence threshold of 0.5 for both models.

FIGURE 5.  Example of visual review process for Steeple Jason “Bubble” area Black-browed Albatross detections at a zoom level of 1:75. 
Each grid is 10 × 10 m.
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the same area. 10.5 hours of analyst time were required 
for manual counts of penguins in the same imagery and 
the model took ~50 min to run detections. Using these 
comparisons, both models cut down detection time 
to <10% of analyst time for individual counts. For the 
density-based method on the Steeple Jason 2018 im-
agery, it took ~50 hr of analyst time to estimate 198,764 
albatrosses in 0.29 km2 of imagery, while it took the al-
batross model 10 hr to detect 190,435 albatrosses in that 
area. Using the deep learning model reduced manual 
analyst time to 20% for density-based estimations.

Common Errors
Common errors made by the Black-browed Albatross 
model were typically false positives, where the model 
picked up on other seabirds, rocks, and shadows as alba-
tross (Figure 7). Albatross were also missed across sites, 
but false positives were much more common. Common 
errors in the Southern Rockhopper Penguin model were 
also false positives, including rocks, shadows, and alba-
tross. Due to their smaller size, feather markings that are 
harder to distinguish, and lack of regular nest configur-
ation, Southern Rockhopper Penguins are far harder to 
distinguish than Black-browed Albatrosses, therefore the 
model missed penguins in many areas. Additionally, it is 
hard for the human eye to pick up on both species in the 

lower resolution imagery, so this is likely also a limitation 
for the CNN.

DISCUSSION

This is one of the first studies to successfully use CNNs for 
seabird counts in drone imagery at large mixed colonies. 
Our method spanned a large area, was effective and ac-
curate, achieving 97.66% and 87.16% accuracy detecting 
and counting Black-browed Albatrosses and Southern 
Rockhopper Penguins, respectively, on Steeple Jason and 
Grand Jason Islands, sites of global importance to both 
species. Many studies focus on CNN-based detection in 
individual images (Hodgson et al. 2018, Hong et al. 2019) 
or the use of other computer vision techniques for detec-
tion in orthomosaics (Rush et al. 2018, Lyons et al. 2019). 
This study builds on previous work to run a deep learning 
algorithm for object detection on large orthomosaics. This 
is unique and particularly enabling when investigating 
large colonies such as those found on the Falkland 
(Malvinas) Islands because it provides opportunities to 
link focal bird locations with broad habitat features, al-
lowing researchers to explore patterns and processes of 
individual organisms and how they interact with the larger 
ecosystem. Many of these patterns could be missed when 

TABLE 2.  Black-browed Albatross counts of individuals at all sites.

Colony area name CNN detections Manual counts Percent difference

  1. Steeple Jason North 133,075 135,774a 2.0
  2. Steeple Jason South 57,360 62,990a 9.4
  3. Steeple Jason Bubble 2,767 2,834 2.3
  4. Steeple Jason Hump 6,419 6,673 3.8
  5. Steeple Jason Blob 495 500 1.0
  6. Steeple Jason N Tip Gully 46,053 n/a n/a
  7. Steeple Jason South Neck 14,255 n/a n/a
  8. Grand Jason SW Right Third 19,702 n/a n/a
  9. Grand Jason SW Middle Third 8,492 n/a n/a
10. Grand Jason SW Left Third 11,707 n/a n/a
11. Grand Jason SE Blob 3,707 3,988 7.4
12. Grand Jason SE Colony 20,466 n/a n/a

aDensity-based estimations.

TABLE 3.  Southern Rockhopper Penguin counts of individuals.

Colony area name CNN detections Manual counts Percent difference

  3. Steeple Jason Bubble 2,015 2,069 2.6
  4. Steeple Jason Hump 1,911 1,914 0.2
  5. Steeple Jason Blob 1,459 1,483 1.6
  6. Steeple Jason N Tip Gully 29,114 n/a n/a
  7. Steeple Jason South Neck 4,660 n/a n/a
  8. Grand Jason SW Right Third 1,781 n/a n/a
  9. Grand Jason SW Middle Third 2,516 2,476 1.6
10. Grand Jason SW Left Third 3,848 n/a n/a
11. Grand Jason SE Blob 7,282 7,557 3.7
12. Grand Jason SE Colony 14,194 n/a n/a
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using a static density-based metric or when constrained 
to a small area.

The results of the present CNN analysis were within 
5% of manual individual counts for both Black-browed 
Albatrosses and Southern Rockhopper Penguins for all 
but one site and all manual counts were higher than CNN 
counts except for one site. This may be partially due to the 
possibility of manually counting the same bird in different 

tiles, as overlap was not considered while generating 
training data. Duplicate training bounding boxes could be 
removed with a non-max suppression function, and fur-
ther research is required to assess how overlap may bias 
counts. The density-based Black-browed Albatross estima-
tions based on manual counts at Steeple Jason North and 
South were both higher than CNN counts, which may be 
because the CNN counts individuals across the whole area 

FIGURE 7.  CNN generated detections of albatrosses overlaid on orthomosaics at (A) Steeple Jason Bubble (2019) and (B) Steeple 
Jason North (2018). Common false positives seen at Steeple Jason North are seen in (C) other seabirds and (D) rocks.
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whereas the manual estimations counted individuals in 
smaller specific quadrats.

Our study provides important considerations for fu-
ture flight planning for seabird colony surveys. The alba-
tross model had difficulty in the Steeple Jason 2018 lower 
resolution imagery, suggesting that the 5  cm/pixel reso-
lution may be approaching a detection threshold. The 2018 
imagery was also not sufficient to detect penguins. The 
penguin model had difficulty even in the 1.80 cm pixel–1 im-
agery, suggesting that this may be the maximum threshold 
for accurate detection using this approach. Generally, col-
lecting imagery at a high resolution requires flying lower 
to the ground, which covers less area per flight but may be 
a necessary tradeoff for more accurate abundance estima-
tion using this type of drone sensor combination. Flying 
lower to the ground may also introduce disturbance for 
more mobile species. In the highest resolution imagery at 
0.5 cm pixel–1, there were very few ghosting artifacts gener-
ated by the photogrammetry software. Ghosting artifacts 
occur when the animal moves during flight lines and the 
software has trouble stitching the object together. In the 
present study, the lack of ghosting artifacts in the highest 
resolution imagery of both albatrosses and penguins sug-
gests that there was little disturbance and flying at this 
height did not significantly increase error. Ideally, to pro-
duce one single model that can accurately detect both spe-
cies of birds, it is recommended to obtain imagery lower 
than 1.5 cm pixel–1 resolution.

There are also key integration considerations to ensure data 
continuity. For both species, there is significant variability in 
the trajectory and magnitude of population change amongst 
annually monitored sites and sources of error in density-
based ground counts come from natural variation in breeding 
density and sampling error in colony area measurement 
(Huin and Reid 2006, Baylis 2012). Adding sites to annual 
monitoring can reduce variability and the use of drones to es-
timate colony size has been proven to reduce cumulative vari-
ance when compared to traditional approaches. Yet, duplicate 
counts using the new drone count method and the previous 
methods will be required to determine the true ratio of the 
magnitude of traditional counts to drone counts (Hodgson 
et  al. 2016). Once the ratios are determined with corres-
ponding error metrics, the new automated drone counts can 
be compared to historical counts. The upfront cost to imple-
ment drone monitoring and automated counting is substan-
tial and these methods may only be applicable to long-term 
monitoring of large, complex colonies where the cost tradeoff 
is deemed worth it.

It is also crucial to balance the risks of Type I (false posi-
tive) vs. Type II (false negative) errors within the deep 
learning method. Deep learning models can be tuned to 
internally filter fewer detections, outputting more low 

confidence detections and minimizing Type II errors at 
the cost of more Type I.  In the case of some endangered 
species, there is less concern in committing Type I errors 
because the objective is to count as many individuals as 
possible (Shrader-Frechette 1994). In situations where de-
tections absolutely cannot be missed, but the amount of 
data to review is intractably large, models with low confi-
dence thresholds followed by analyst verification could still 
save substantial manual time with few missed detections. 
The appropriate confidence threshold will be situation-
dependent, but the benefit of deep learning models is seen 
in the ability to easily fine-tune these systems based on de-
sired outcome.

The benefits of the methods presented here for 
improving long-term seabird monitoring could be sub-
stantial. Monitoring the world’s largest Black-browed 
Albatross and second largest Southern Rockhopper 
Penguin colonies is crucial for determining thresh-
olds of concern, and therefore impact management of 
both species. Breeding abundance and productivity can 
be intricately linked to the physical properties of the 
marine ecosystem, indicating changes in marine health 
(Diamond and Devlin 2003). Southern Rockhopper 
Penguins are particularly vulnerable to the increasingly 
stochastic marine environment, and mass mortality 
events may increase due to climate change (Baylis 2012, 
Dehnhard et al. 2013). With more frequent and accurate 
population monitoring researchers should be more 
likely to detect short-term and long-term variability, 
although further research is required to automatically 
count chicks and determine breeding success, determine 
nonbreeding from breeding individuals, and to deter-
mine the appropriate method to count breeding pairs of 
Southern Rockhopper Penguins instead of individuals.

The results of this study indicate that drone imagery 
coupled with deep learning is a viable tool for popu-
lation monitoring at the Falkland Islands and beyond. 
Although there was a significant investment of time 
in development, both models can be applied to future 
drone imagery. Collecting drone imagery of the same 
sites across multiple years will allow for consistent com-
parisons and analysis of population trends and patterns 
at whole colony scales and provide details on the eco-
logical context of colony areas and how they may be 
changing over time. Reducing the time spent manually 
counting seabirds may free up time for more complex 
research questions and patterns to be explored through 
both in situ sampling and remote sensing methods. 
While monitoring large, hard-to-access seabird colonies 
proves to be challenging, the push toward automated 
methods can significantly increase capabilities without 
sacrificing data quality and accuracy.
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