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Abstract

It is increasingly important to understand the extent and health of coastal natu-

ral resources in the face of anthropogenic and climate-driven changes. Coastal

ecosystems are difficult to efficiently monitor due to the inability of existing

remotely sensed data to capture complex spatial habitat patterns. To help man-

agers and researchers avoid inefficient traditional mapping efforts, we developed

a deep learning tool (OysterNet) that uses unoccupied aircraft systems (UAS)

imagery to automatically detect and delineate oyster reefs, an ecosystem that

has proven problematic to monitor remotely. OysterNet is a convolutional neu-

ral network (CNN) that assesses intertidal oyster reef extent, yielding a differ-

ence in total area between manual and automated delineations of just 8%,

attributable in part to OysterNet’s ability to detect oysters overlooked during

manual demarcation. Further training of OysterNet could enable assessments of

oyster reef heights and densities, and incorporation of more coastal habitat

types. Future iterations will be applied to high-resolution satellite data for effec-

tive management at larger scales.

Introduction

Coastal and estuarine landscapes are biogenically struc-

tured mosaics that include both vegetated (marshes, man-

groves, seagrasses, etc.) and animal-derived (shellfish

reefs, corals, etc.) habitats. These structured habitats pro-

vide a number of ecosystem services that include essential

nursery habitat, carbon sequestration, improved water

quality, and shoreline protection (Barbier et al. 2011;

Spalding et al. 2014; Lefcheck et al. 2019). However, these

landscapes are at risk from the combined stress of cli-

matic and direct human-driven changes (IPCC, 2014),

making effective management and conservation of estuar-

ine and coastal environments increasingly crucial. Unfor-

tunately, the spatial complexity and regular submergence

of these areas makes it challenging to assess their vulnera-

bility on a broadscale using remotely sensed datasets,

which can be spectrally and radiometrically inconsistent

across sensor platforms, and may not be captured at

appropriate spatial or temporal resolutions (Jollineau and

Howarth 2008; Corbane et al. 2015).

Biogenic shellfish reefs (e.g. oysters) are one such

coastal ecosystem that are ecologically and economically

valuable globally (Grabowski et al. 2012) but have been

imperiled by numerous natural and anthropogenic

impacts over the last century (Beck et al. 2011). Habitat

mapping and population assessments of these environ-

ments remain problematic due to the expansive estuarine

conditions the oysters can occupy (e.g. brackish to saline,

subtidal to intertidal, etc.) and the unreliability of delin-

eating oyster habitats from aerial and satellite imagery

(Grizzle et al. 2002; Schill et al. 2006). Oyster reefs in

remotely sensed imagery often appear too similar to adja-

cent mudflats or salt marshes, which confound the appli-

cation of standard segmentation and classification tools

within GIS programs (Fig. 1). In some cases, this necessi-

tates manually intensive, prolonged field sampling initia-

tives to effectively map entire coasts (Jensen et al. 2014).

The use of advanced processing techniques or novel sen-

sors (e.g. hyperspectral imagery) has offered some success

for remote detection and measurement of oyster reefs

(Schill et al. 2006; Choe et al. 2012; Le Bris et al. 2016;
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Grizzle et al. 2018) but has not been effectively imple-

mented in broadscale management practices due to the

specialized nature of data collection, intensive data pro-

cessing, and regional variations where oyster reefs exist

within the tidal frame (fully intertidal to subtidal).

While shellfish reef ecosystems may not be easily dis-

cernible in satellite imagery, one method to solve this

issue is the use of higher resolution imagery available

through unoccupied aircraft systems (UAS; or drone

systems). UAS encompasses the aircraft (unmanned aer-

ial vehicle, UAV) and the components necessary to

operate the aircraft as well as the sensor payload. Over

the last two decades, UAS implementation in environ-

mental research has experienced an exponential increase

(Manfreda et al. 2018). Imagery from UAS technology

rivals resolutions achieved from occupied aircraft while

reducing costs and safety risks as well as providing

more flexibility with flight planning (Joyce et al. 2018;

Johnston 2019). With increased resolution, differences

between similar environments become more pronounced

and challenging classes become more easily separable.

This added resolution has proven beneficial for seagrass

mapping (Nahirnick et al. 2019) and effective as a

source for refining habitat classification training data in

lower resolution satellite data (Gray et al. 2018). The

cryptic nature of shellfish reef habitat in remotely sensed

imagery makes it an ideal candidate to test the limits of

combining high-resolution imagery with deep learning-

based habitat classification systems in conservation

science.

Emerging methods in deep learning, a subfield of

machine learning, have demonstrated potential to

address environmentally and ecologically pressing issues

in the coastal zone (Gray et al. 2019). Convolutional

neural networks (CNNs) are a class of deep neural net-

works that scan over an image, building hierarchical

representations of the input data by composing layers of

nonlinear transformations, allowing it to learn features

(e.g. lines, shapes, gradients, oyster reef attributes) for

classification or regression from the input data automat-

ically, rather than needing an expert image analyst to

manually engineer these features. CNNs are proving

capable of analyzing vast image catalogs and identifying

or classifying objects of interest with near-human accu-

racy (Lecun et al. 2015). Providing a CNN with a train-

ing dataset of labeled images (thousands to millions of

examples for most neural networks) allows the network

to iteratively update the weights of adjustable parame-

ters of its layers of transformations to find an error

minimum in the predicted labels compared to the target

labels. A major advantage CNNs have over other image

classification algorithms is the ability to not just factor

in spectral characteristics of the subjects but also learn

Figure 1. Oyster reef imagery comparison of RapidEye, WorldView-3,

and unoccupied aircraft systems (UAS). Satellite imagery courtesy of

DigitalGlobe Foundation and Planet, Inc.
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complex spatial attributes and relationships among

them, essentially “understanding” a subject’s context

within an image (Maggiori et al. 2016; Kemker et al.

2018). This gives the CNN model some semblance of a

landscape context to better delineate habitats that appear

similar in color and texture but occur in different loca-

tions within a regional mosaic.

Here we demonstrate the application of a CNN to

automate the assessment of a coastal ecosystem,

intertidal oyster reefs, to rapidly determine habitat

extent within an estuarine managed area. Specifically,

we use high-resolution imagery obtained from a

fixed-wing UAS to train a CNN for detecting and

delineating intertidal reefs of eastern oyster (Crassostrea

virginica) using one site of the North Carolina National

Estuarine Research Reserve network – the Rachel Car-

son Reserve (RCR) adjacent to Beaufort, NC (Fig. 2).

We also assess efficacy of the CNN model creation at

different resolution scales as well as the accuracy of

the final model output against manual oyster reef

delineation.

Materials and Methods

Intertidal oyster reef surveys

We conducted UAS flights over the RCR during spring

2018 coincident with low tidal conditions, when most

oyster reefs in the area are above water, and reduce glare

with more favorable sun angles (solar elevations < 60

degrees) to maximize our reef detection potential. The

RCR is a complex of islands (~10 km2) within the estuar-

ine Back Sound including the gamut of coastal habitats

(oyster reef, salt marsh, seagrass, tidal flats, dune grasses

and shrubland, and maritime forest). High-resolution

RGB (red, green, blue) imagery was collected with a sen-

seFly eBee Plus fixed-wing aircraft equipped with a Sensor

Optimized for Drone Applications (S.O.D.A.) camera,

flown at approximately 100-m altitude for a ground sam-

pling distance (GSD) of 2.2 cm/pixel with 75% and 80%

lateral and longitudinal image overlap, respectively. The

eBee Plus is equipped with a survey-grade GPS system

that allows for real-time kinematic (RTK) or post-

Figure 2. Study area map of the Rachel Carson Reserve from UAS orthoimagery with example areas where oyster reefs fit into the landscape

mosaic.
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processed kinematic (PPK) corrections to image geotags,

providing subdecimeter horizontal accuracies (Seymour

et al. 2018).

We processed images with Pix4D photogrammetry soft-

ware to create georectified orthomosaics (Fig. 2). We then

manually defined oyster reefs with individual polygons in

ArcGIS v10.4 for the entire RCR (Fig. 3) where inside of

a polygon was labeled “oyster” and outside was labeled

“background.” This process required approximately 14 h

of personnel time. To assess the CNN’s efficacy at differ-

ent spatial scales, orthomosaics and respective polygon

labels were tiled and parsed into image catalogs at three

resolutions (1000 9 1000 pixels, 2000 9 2000 pixels, and

4000 9 4000 pixels with 826, 343, and 163 tiles, respec-

tively, see Fig. 4 for examples of 2000 9 2000 tiles with

label polygons). Each image catalog was split for model

development (80% of images) and testing (20% of

images) (Fig. 4). The model development dataset was fur-

ther split for training (80% of images) and validation

(20% of images). Using best practices to reduce model

overfitting (Simard et al. 2003), we artificially increased

our dataset size by applying random augmentations (e.g.

blurring, noise addition, adjusted contrast, translation,

rotation, etc.) to images within the training dataset using

the python tool imgaug (https://github.com/aleju/imga

ug), effectively increasing our training dataset sixfold.

Preparing data for training the OysterNet CNN required

approximately 1.5 h of personnel time per dataset.

OysterNet architecture

We conducted all CNN development in the python pro-

gramming language using the Keras framework and Ten-

sorflow as a backend. Training and testing were done on

a machine running Ubuntu 16.04 with an Intel i7-7800X

CPU, 32GB of RAM, and an NVIDIA Tesla Titan Xp

12GB Graphics Processing Unit (GPU). All CNN code,

analysis scripts, and a Docker container for replicating

the development environment are available online

(https://github.com/patrickcgray/oyster_net). OysterNet is

based on Mask R-CNN (He et al. 2017), a flexible CNN

architecture with excellent performance in instance seg-

mentation. OysterNet was initially trained on the Micro-

soft Common Objects in Context (COCO; Lin et al.

Figure 3. Extent of the Rachel Carson Reserve manually delineated oyster reef polygons. Insets provide examples of oyster reef polygons

overlaying UAS imagery.
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2014) dataset before being “fine-tuned” on our oyster

imagery. COCO, an open-access dataset of over 200 000

generic labeled images, allowed us to leverage transfer

learning, the ability of neural networks to use features

learned on one dataset on an entirely different task (Raza-

vian et al. 2014; Yosinski et al. 2014). Based on the tiled

image catalogs we created, each training sample for the

CNN was a x by y by 3 tensor (R,G,B) with an accompa-

nying polygon designation if an oyster reef was present

within the image.

We independently trained OysterNet on each of the

three image size datasets. During model training, the

validation dataset is used to assess training efficacy dur-

ing each update to the parameter weights (these update

points are called epochs) by measuring both how well

the model is minimizing loss (how well the model pre-

dictions fit the true labels) and how the loss on the

training data compares to the loss on validation data to

prevent overfitting (overly memorizing the training data

inputs and not generalizing to new data). The CNN

architecture has dozens of hyperparameters (or “knobs”)

that can be tweaked to alter how the CNN views data,

learns, and makes predictions. We only diverged from

the hyperparameters reported in the initial Mask R-CNN

paper where necessary to better suit the spatial structure

of aerial imagery (loss function, training and validation

loss during each training run, and hyperparameters

available in Appendix A). Training for each network

took approximately 6 h and was run for just over 150

epochs. To reduce overfitting, this training was done in

three rounds with minor changes made during each iter-

ation to increase the number of trainable layers and

decrease learning rate (please refer to Data S1 for more

details).

OysterNet testing

Final OysterNet CNNs were applied to the test datasets,

which had no overlap with the training and validation

datasets. We compared OysterNet model outputs on a

pixel-to-pixel basis from the test imagery against our

manually delineated reefs (drawn polygons in ArcGIS;

Fig. 4) using several metrics to determine the efficacy of

the trained models including accuracy, precision, and

recall. Accuracy of a CNN is the proportion of true posi-

tive and negative predictions over the total possible obser-

vations. Precision is the ratio of true positive predictions

over the total number of predictions made. Recall is the

proportion of true positive predictions over the total

number of true positives. While accuracy is often a good

metric for general performance, in a detection problem,

where the class of interest is only a small proportion of

total area, it can be misleading. For example, if only one

in a hundred pixels is your class of interest, the model

could predict every pixel background and have 99% accu-

racy but essentially be useless. Recall and precision are

more informative when we are concerned about false pos-

itives (precision) or false negatives (recall). Output poly-

gons from the OysterNet CNN include a confidence value

between 0.0 and 1.0 for each prediction, allowing us to

set a threshold (or probability cutoff), which determines

whether the predicted oyster reef is included in the final

output maps. Deciding on this threshold changes how

conservative the output is and impacts the overall efficacy

Figure 4. Conceptual model of workflow from tiled orthoimagery through final OysterNet output analysis. Fixed-wing aircraft pictured is a

senseFly eBee.
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metrics (e.g. allowing a user to trade precision for recall

with a lower threshold). Our threshold was determined

empirically from the recall/precision curve on the

2000 9 2000 model (Fig. 5) to be 0.98. Individual and

overall areas of oyster reefs were generated based on the

overall pixel count within classified reef matrices refer-

enced back to the GSD of the UAS imagery. In addition

to quantitative metrics, false positives and negatives were

manually examined to assess validity and potential expla-

nations for errors.

Results

The best balance of recall and precision achieved by the

OysterNet CNN was accomplished with the 2000 9 2000

model (Fig. 5) achieving a precision of 0.771 and recall of

0.772. While the area of manually delineated oyster reefs

within the test dataset totaled 8950.50 m2 (0.90 ha), the

2000 9 2000 OysterNet model generated a predicted oys-

ter reef area of 9657.27 m2 (0.96 ha), equivalent to an 8%

difference in area (Fig. 6).

Processing imagery through the OysterNet CNN took

2 seconds per image regardless of image resolution

because they were all resampled to 1024 9 1024 resolu-

tion. Thus, for the 2000 9 2000 model at 2.2 cm/pixel,

the CNN processed 0.0968 hectare per second. At this

rate, the trained OysterNet CNN could determine the

oyster reef distribution within the entire RCR (~10 km2)

in under 3 h. The time it would require to manually

delineate reef areas with an RTK-GPS backpack system

while transiting sandflats and tidal channels within the

reserve is in the order of 8 h for 0.5 km2, which has been

conducted for prior work within the RCR (Fodrie et al.

2014; Rodriguez et al. 2014). Considering that oyster reefs

are interspersed through just under half the RCR

(~4 km2) when major stretches of supratidal land are

omitted, it would require a minimum of 8 work days to

manually delineate all the reefs within the RCR (Table 1).

Discussion

This present study provides the first example of conduct-

ing semantic image segmentation with a CNN to classify

and measure an economically and ecologically valuable

intertidal habitat. While there are some initial time costs

involved in training and refining the model, the true ben-

efit of OysterNet emerges from the combination of rapid

and cost-effective UAS-based data collection with a pre-

trained, accurate model that can automatically assess large

areas in just a few hours compared with the multiple days

to weeks required to manually delineate reefs from occu-

pied aircraft or satellite imagery, or the months to years

required when employing purely field-based approaches.

Other research has also found that deep learning methods

are dramatically reducing the time required for ecological

monitoring (W€aldchen and M€ader 2018; Weinstein 2018;

Chilson et al. 2019), and continual advancements in com-

putational efficiency (e.g. more capable GPUs) will fur-

ther decrease the time necessary for CNNs like OysterNet

to analyze large and rapidly collected image datasets. Even

without waiting for these advancements, OysterNet can

easily be parallelized on multiple machines to rapidly

detect oyster reefs across vast areas of orthoimagery.

Our results also reveal considerations for CNN-based

semantic segmentation approaches in terms of the spatial

context of training imagery and the overall fidelity of reef

edges. Given the degraded model performance when using

the 1000 9 1000 pixel image size for training, the added

spatial context of the 2000 9 2000 pixel images appears

to be more important than the addition of training data

using smaller image sizes. While the 4000 9 4000 model

also had considerably worse performance than the

2000 9 2000 version, this was potentially due to a lack of

training examples. Because the same total area of UAS

imagery was used to create the tiles, the 4000 9 4000 ver-

sion had 1/4th the number of tiles, and this may have led

to degraded performance. Additionally, due to memory

requirements, all tiles used by our CNN were resized to

1024 9 1024, so the downscaled 4000 9 4000 tiles (re-

sulting GSD of 8.8 cm pixel�1) may not have had the

spatial resolution to accurately predict oyster habitat

given the available training data and limited spectral

Figure 5. Precision vs. Recall is presented for the 4000 9 4000 pixel

model (green), the 2000 9 2000 pixel model (orange), and the

1000 9 1000 model (blue) showing the 2000 9 2000 model as the

clear top performer. The 2000 9 2000 model curve shows higher

precisions and lower recall at higher confidence thresholds. Precision

decreases and recall increases as the threshold decreases. Setting this

threshold allows a user to tune a model for detecting more oyster

reef at the cost of more false positives and likely analyst time vetting

false positives, or minimize false positives at the risk of missing many

true positives.
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bands. Further tests using the same number of tiles at

each spatial scale will provide more insight into the trade-

offs of resolution and spatial context. Doubtless though,

increased training data will prove beneficial for future

models.

Discrepancies in observed and predicted reef areas,

presented in the recall and precision metrics, require

careful consideration (Fig. 6) and may not be indicative

only of poor performance of OysterNet. Manual bound-

ing of reefs is subject to user error when determining

reef edges, especially when analysts address sparse and

disjointed portions of oyster habitat. Considering that

the OysterNet CNN detected reefs that were missed dur-

ing manual delineation, the 8% overestimate in reef area

is likely closer to the true coverage of reefs within the

RCR. It is a challenge for analysts to determine what

lower bound of oyster density should still be classified

as a discrete reef, and our training data excluded some

portions of the RCR shoreline with sparsely clustered

oysters. As future work and a potential solution to this

issue, with sufficient examples of field measured density,

the present system could be expanded to a multitask

CNN that first isolates oyster habitat, and then regresses

a continuous density value based on a density-labeled

training dataset.

The results of the present study show great promise for

broader application. The overall area parsed for training

and testing was relatively small (<10 km2), yet yielded

performance acceptable for management purposes at

regional scales. Building the training dataset to encompass

a larger area will enhance the CNN’s efficacy. Even with a

relatively small amount of training data, the CNN was

A D G J M

B E H K N

C F I L O

Figure 6. Comparison of orthoimagery tiles (top; A, D, G, J, M) with corresponding manually delineated oyster polygons (middle; B, E, H, K, N)

and automatic polygon creation from the 2000 9 2000 OysterNet convolutional neural network (bottom; C, F, I, L, O). While overall polygons

are similar, small variations can be seen. Automatic detections in (C) show an inclusion of sparser oyster that was not included in (B). Panels (I),

(L) and (O) include small patches that were not included in manual delineations (H), (K) and (N) as well as a small section of false-positive polygon

in the bottom right of (I) and top center of (O) that appear to have a similar texture to oyster reefs but is scrub-shrub in (I) and eroding marsh in

(O). Colors indicate the order of polygon creation, which was arbitrary for both manual and CNN methods but helps differentiate detections.

Table 1. Time required to delineate oyster reefs using manual GPS

delineation, digital delineation, and automated delineation through

OysterNet

Reef delineation method Time required per 4 km2

OysterNet (CNN) 13.15 h

Digital (GIS) 26 h

Manual (RTK-GPS) 64 h

OysterNet and digital delineation times incorporate a conservative 8 h

required for acquiring imagery and a further 4 h for processing ima-

gery. Timing is also based on the trained OysterNet.
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able to isolate shallow subtidal oysters at a centimeter

scale, which is promising for the applicability of a CNN

over a range of oyster reef conditions spanning a greater

geographic area and not necessarily relying on reefs being

exposed during low tide. Given OysterNet’s ability to

define shallow submerged reefs, it is possible that flights

done at higher tides may have still delineated reefs rea-

sonably well; however, it is likely that we would lose defi-

nition of the deeper reefs. However, the regional

variability in tidal growth dynamics and landscape com-

position may necessitate region-specific CNNs, perhaps

relying on transfer learning from our initial instance of

OysterNet if environmental conditions are not drastically

different. In similar environments, like across the south-

eastern US, OysterNet may already be broadly accurate

with some additional levels of accuracy achieved by sup-

plementing our training pool with local data. It is possi-

ble that a trained CNN using data from a broader

geographic span could accurately identify oyster reefs

regardless of regional environmental differences. In the

present study, labeling was limited to one type of inter-

tidal species. Further training with imagery labeled with

other habitat components (e.g. marsh grass species, sub-

mersed aquatic vegetation, etc.) would provide more

detailed habitat assessments rather than the binary output

currently provided.

Enhancing RGB training data with other synoptic data-

sets may increase OysterNet’s performance. For example,

digital surface models (DSMs) generated via Structure

from Motion (SfM) processing of UAS data can provide

a three-dimensional texture layer to help differentiate

environments that exhibit similar spectral signatures in

2D imagery (L€angkvist et al. 2016) and may assist with

identifying oyster reefs. If the UAS orthoimagery is geo-

rectified within a vertical datum, the subsequent digital

elevation model (DEM) could help OysterNet learn the

elevation ranges that oyster reefs occupy within a land-

scape, enhancing detection. There are some caveats with

using these data layers on submerged oysters, considering

that SfM processing struggles when water is present

(Joyce et al. 2018).

OysterNet may also be extremely useful for application

to very high resolution (VHR) multispectral satellite ima-

gery, potentially further reducing time requirements for

data collection and vastly expanding the footprint.

Indeed, data fusion techniques using UAS-derived ima-

gery, where it is easier to clearly delineate oyster reefs

from surrounding habitats (Gray et al. 2018), could gen-

erate more accurate and precise labels for VHR satellite

imagery training datasets.

OysterNet results support the ongoing successful move-

ment toward automated classification of remotely sensed

coastal environments, particularly with cryptic intertidal

habitats, including other ecologically or economically

valuable habitat components. Deep learning methods such

as this will soon become powerful instruments for broad-

scale coastal zone management. Future iterations of Oys-

terNet will be a valuable tool for oyster fisheries

management and broad estuarine ecosystem monitoring

through rapid population assessments and change

detection.
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