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Toward Generalized Change Detection on Planetary
Surfaces With Convolutional Autoencoders

and Transfer Learning
Hannah Rae Kerner , Kiri L. Wagstaff, Brian D. Bue , Patrick C. Gray , James F. Bell III, and Heni Ben Amor

Abstract—Ongoing planetary exploration missions are returning
large volumes of image data. Identifying surface changes in these
images, e.g., new impact craters, is critical for investigating many
scientific hypotheses. Traditional approaches to change detection
rely on image differencing and manual feature engineering. These
methods can be sensitive to irrelevant variations in illumination or
image quality and typically require before and after images to be
coregistered, which itself is a major challenge. Additionally, most
prior change detection studies have been limited to remote sensing
images of earth. We propose a new deep learning approach for
binary patch-level change detection involving transfer learning
and nonlinear dimensionality reduction using convolutional
autoencoders. Our experiments on diverse remote sensing datasets
of Mars, the moon, and earth show that our methods can detect
meaningful changes with high accuracy using a relatively small
training dataset despite significant differences in illumination,
image quality, imaging sensors, coregistration, and surface
properties. We show that the latent representations learned by a
convolutional autoencoder yield the most general representations
for detecting change across surface feature types, scales, sensors,
and planetary bodies.

Index Terms—Change detection algorithms, earth, machine
learning, mars, moon, neural networks, remote sensing, supervised
learning, unsupervised learning.

I. INTRODUCTION

ONGOING planetary imaging investigations such as the
High Resolution Imaging Science Experiment (HiRISE)

[1] and ConTeXt Camera (CTX) [2] on the Mars Reconnaissance
Orbiter are returning large volumes of image data that continue to
grow faster than scientists can analyze and categorize. There is a

Manuscript received April 1, 2019; revised June 18, 2019; accepted August
7, 2019. This work was supported by the Jet Propulsion Laboratory, California
Institute of Technology, Internal Strategic University Research Partnerships
(SURP) program under a contract with the National Aeronautics and Space
Administration. (Corresponding author: Hannah Rae Kerner.)

H. R. Kerner is with the Department of Geographical Sciences, University of
Maryland, College Park, MD 20742 USA (e-mail: hkerner@umd.edu).

K. L. Wagstaff and B. D. Bue are with the Jet Propulsion Labora-
tory, California Institute of Technology, Pasadena, CA 91109 USA (e-mail:
kiri.l.wagstaff@jpl.nasa.gov; bbue@jpl.nasa.gov).

P. C. Gray is with the Nicholas School of the Environment, Duke University,
Durham, NC 27710 USA (e-mail: patrick.c.gray@duke.edu).

J. F. Bell III is with the School of Earth and Space Exploration, Arizona State
University, Tempe, AZ 85282 USA (e-mail: Jim.Bell@asu.edu).

H. Ben Amor is with the School of Computing, Informatics, and Decision
Systems Engineering, Arizona State University, Tempe, AZ 85282 USA (e-mail:
hbenamor@asu.edu).

Color versions of one or more of the figures in this article are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSTARS.2019.2936771

need for systems that can rapidly and intelligently analyze these
data and prioritize observations of interest to scientists. Change
detection, the process of automatically identifying changes in
surface features between two images collected over the same
location at different points in time, is a critical tool for ana-
lyzing these data. For example, recurring slope lineae (RSL)
are narrow, low-albedo features observed on Mars that extend
from bedrock to incrementally lengthen down steep slopes and
are thought to be formed by shallow subsurface liquid water
flows [3]. RSL appear to lengthen on timescales of several
months and appear/disappear on timescales close to one year [3].
Because of their implications for the past and present history of
water on Mars, RSL are key features that scientists are actively
monitoring for changes as they develop and evaluate theories
on RSL formation and growth mechanisms [e.g., Fig. 1(a)]. A
system that automatically detects RSL in images from HiRISE
or other high-resolution imaging systems could help scientists
better understand where RSL occurs, how they evolve, and how
or why they form in the first place.

New meteorite impacts are another key surface feature that
scientists monitor for change. Daubar et al. [4] reported the
discovery of 248 new impact sites that formed on Mars within
the last few decades [e.g., Fig. 1(b)]. The landscape of Mars
and other planets continues to be altered by impact events.
Speyerer et al. reported the discovery of 222 new impact sites
on the moon, which was 30% more impacts than was expected
based on current estimates of the current cratering rate on the
moon [5] [e.g., Fig. 1(c)]. Documenting when and where new
impacts occur helps scientists to refine estimates of the past and
present cratering rates in the solar system, which in turn enables
improved age estimates of important events in the solar system’s
history [4], [5].

High spatial and temporal resolution imaging of the earth by
government and commercial satellites enables observation of
countless surface features that change due to natural or human-
induced processes. Detecting changes in surface features on the
earth—e.g., new construction, fires, or volcanic eruptions [e.g.,
Fig. 1(d)]—is important for our scientific understanding of the
earth as well as for many commercial, humanitarian, and defense
applications.

Popular approaches to change detection are difference-based
methods, which compare differences in pixel intensities be-
tween images acquired at two different times, and postclassifica-
tion comparison methods, which compare object or land-cover

1939-1404 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-3259-7759
https://orcid.org/0000-0002-7856-3570
https://orcid.org/0000-0002-8997-5255
https://orcid.org/0000-0002-9896-8217
mailto:hkerner@umd.edu
mailto:kiri.l.wagstaff@jpl.nasa.gov
mailto:bbue@jpl.nasa.gov
mailto:patrick.c.gray@duke.edu
mailto:Jim.Bell@asu.edu
mailto:hbenamor@asu.edu


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

Fig. 1. Example before and after images from the (a) HiRISE RSL (Mars), (b) CTX impacts (Mars), (c) LROC impacts (Moon), and (d) PlanetScope (Earth)
datasets. Image IDs from Table II ESP_030769_1685, ESP_031059_1685, P06_003451_2035_XN_23N171W, P13_006286_2073_XN_27N171W, M181330922L,
and M1139065512L, ertaale-20170116-before, and ertaale-20170123-after.

classifier predictions at the image or pixel level. Many machine
learning approaches exist for detecting change between remote
sensing images, including kernel-based methods such as support
vector machines (SVMs) as well as deep learning methods. In
general, prior approaches to change detection have at least one of
the following limitations: they require large amounts of training
data to pretrain classifiers, they require classes for each type of
surface feature being monitored for change to be defined, they
require images to be precisely coregistered, or they are sensitive
to irrelevant variations caused by illumination and processing
artifacts. Furthermore, the majority of prior work for change
detection in remote sensing images has been limited to images
of earth and have not been evaluated for images of terrestrial
planets beyond earth (e.g., Mars and the Moon).

The goal of our approach is to learn general representations
of bitemporal image pairs (i.e., pairs of images acquired on two
different dates) that are useful for identifying when changes
in surface features have occurred on a planetary body. Using
diverse datasets of remote sensing images of Mars, the moon, and
earth, we find that existing difference-based approaches may be
limited in their ability to generalize to new datasets. We propose
a new deep learning approach to change detection that uses
representations of bitemporal images and transfer learning to
detect surface feature changes in diverse remote sensing datasets
using a relatively small number of labeled training examples.
We performed several experiments to characterize the capacity
for the proposed representations to enable generalization to
new surface feature types, imaging sensors, resolutions, level
of coregistration, and planetary bodies unseen during training.

II. RELATED WORK

Change detection is an active area of research in remote
sensing, and there is a large body of research on its methods and
applications [6]–[9]. Tewkesbury et al. [9] proposed organizing
change detection literature in terms of the comparison method,
describing the method used to determine if a change in surface

features has occurred between two images, and the unit of
analysis, describing the image representation that will be an-
alyzed by the comparison methods. Raw pixel intensities, ob-
tained from images that have had little to no preprocessing
applied, are the most common units of analysis and have been
used widely since the beginning of remote sensing change
detection research (e.g., [9]–[14]). Difference images, in which
each pixel represents the difference between corresponding pixel
intensities in a pair of images, are also a common unit of analysis
[9]. Thresholding is a common change detection method in
approaches where the unit of analysis is the difference in pixel
values (e.g., [15]). If the difference between two images for one
pixel location is greater than a threshold t, which pixel is classi-
fied as a change pixel. If the difference is less than or equal to t,
the pixel is classified as a no-change pixel. This threshold can be
derived empirically as one (or more) standard deviations from
the mean pixel difference in a distribution of pixel differences
across each band of an image [6]. When comparing pixel values
between before and after images directly, it is common to use
a threshold on the ratio between the corresponding pixel values
to classify pixels that constitute change in surface features as in
[5]. While these approaches are computationally fast, they are
sensitive to changes caused by misregistration, illumination, and
image artifacts that are not relevant for assessing surface feature
change [16], which we demonstrate using diverse datasets of
remote sensing images of multiple planetary bodies and surface
feature types.

As the spatial resolution of satellite cameras improved and
pixels sampled smaller surface areas, researchers began de-
veloping higher level representations from pixels that were
more suitable for detecting land-cover classes, made comparison
methods less sensitive to misregistration, and reduced noise
that contributed to false detections [17]. Land-cover classifiers
have been used widely to produce labels that can be com-
pared between before and after images, e.g., [18]–[22]. Com-
paring the land-cover classes predicted for the before and after
image by a classifier is known as postclassification comparison
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and is widely used in the remote sensing change detection
literature. Postclassification approaches that produce pixelwise
labels suffer from misregistration issues in postclassification
comparison because the labels are at the same resolution of the
input image. The unique advantage of this approach is that the
semantics of the change are provided with the detection. The
primary disadvantage of postclassification comparison methods
is that performance depends on the accuracy of the land-cover
classifier since the classification error is compounded when
the predictions are compared for change classification [6], [9].
Additionally, it is difficult and computationally expensive to
learn a new classifier to predict land-cover classes for new
applications and image datasets. For planets beyond Earth, there
are some surface features such as RSL (which we discuss in
this article) or dust devils on Mars for which relatively few
images exist for training a classifier, which can preclude the
use of postclassification comparison methods.

Object-based methods are another category of change detec-
tion approaches driven by the availability of high-resolution
satellite images [8], [9]. In object-based approaches, image
objects are identified before applying a comparison method to
image pairs or sequences. Castilla and Hay [17] presented an
analysis of how image objects derived from pixels in remote
sensing images relate to geographic objects in ground truth.
Walter [23] used objects already present in a GIS database to
compare land-use classes in multitemporal images. Klaric et al.
[24] proposed a framework that extracts high-level statistical
features from images that could be collectively compared and
clustered to detect and describe change in large volumes of
remote sensing images.

Many successful machine learning approaches have been
proposed for change detection in remote sensing images. In
[25]–[27], kernel methods were used to model the temporal
relationships between spatial features in images obtained from
multiple sensors. In [28] and [29], the authors proposed nonlin-
ear change classifiers using SVMs and kernel functions. Im and
Jensen [30] combined neighborhood correlation images with
decision trees to detect change based on correlations between
local spatial and temporal patterns. Bovolo and Brozzone [31]
presented a theoretical analysis of change vectors and their use
for unsupervised change detection. Though not an automated
method, Heyer et al. [32] presented a web-based tool for scien-
tists to visually analyze overlapping orbital images of Mars and
identify potential changed regions.

Deep neural networks are machine learning models that learn
hierarchical representations of input data by composing layers
of nonlinear transformations, the parameters of which are opti-
mized during model training. Methods that employ deep neural
networks are often referred to as “deep learning” methods. In
contrast to traditional machine learning methods, deep learning
methods learn features (e.g., for classification or regression)
from the input data automatically, rather than using manually
engineered features [33]. Many supervised deep learning ap-
proaches have been proposed for change detection in remote
sensing images (e.g., [34]–[38]). In [39]–[41], supervised and
unsupervised deep learning methods are combined to learn
intermediate representations of before and after images that are
useful for identifying important changes between the images.

Zhang [42] used a combined feed-forward neural networks and
K-means clustering for unsupervised difference representation
learning between before and after images. Saha [43] used a
pretrained deep neural network to extract high-level feature
vectors from before and after images that were used for change
vector analysis. In [44], an autoencoder neural network, which
learns a mapping from input images to reduced-dimension latent
representations by minimizing the difference between the input
and autoencoder reconstruction, was used to learn the correspon-
dence between features in before and after images in an unsuper-
vised manner; in contrast, we use a convolutional autoencoder
(CAE) in this article to learn the salient features of before and
after images independently as a preprocessing step for a sepa-
rate change classifier. Siamese neural networks have also been
recently proposed for change detection in remote sensing images
[45]–[47]. Siamese networks consist of two identical networks
that extract features from two inputs that are combined into
one network using a similarity or distance layer. The conjoining
layer minimizes differences between similar examples to ensure
examples that are similar in the input space are also close in
the embedded space [48]. Another important direction for deep
learning approaches to change detection makes use of recurrent
neural networks. Recurrent neural networks maintain informa-
tion about prior states of network activations, rather than relying
on the output from the previous layer alone as is the case for tradi-
tional neural networks [49]. Prior work proposed using recurrent
neural networks to model temporal dependencies between sur-
face features in multitemporal remote sensing images [40], [50],
[51]. Rather than using a deep neural network to identify classes
of surface features in remote sensing images, we propose using a
deep neural network to identify change in a variety of surface fea-
tures without specifying the feature type. We propose several in-
put representations of bitemporal image pairs that enable change
classification and compare how each representation enables the
classifier to generalize beyond its limited training dataset.

III. APPROACH

A. Fine-Tuned Neural Network for Change Detection

We approached change detection as a binary classification
problem. Given an input containing information about a bitem-
poral pair of images, a binary classifier should predict 1 if there
is a change in surface features, and predict 0 if there are no
changes in surface features. Surface changes are changes to
morphologies on the surface that are present in the image, e.g.,
RSL or impact craters. There might be other differences between
a pair of images, e.g., illumination or resolution differences,
that are not considered surface changes and should not result in
change detection.

Deep neural networks are very effective at building hierarchi-
cal representations of complex data. Previous work has shown
that the features learned by a neural network when trained on
a large dataset of natural images in an object dataset, such as
the ImageNet database [52], are generic and can be useful for
classification tasks that may be very different from the original
task (e.g., [53] and [54]). Zhu et al. [35] surveyed the use of
pretrained neural networks for remote sensing tasks. Audebert
et al. [55] and Volpi and Tuia [56] presented segmentation
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Fig. 2. Top section: four representations of two example image pairs from the HiRISE RSL dataset, one without RSL change (row 1) and one with RSL change
(row 2). Bottom section: four representations of two example image pairs from the CTX Fresh impacts dataset, one without impact change (row 3) and one with
impact change (row 4).

networks pretrained on remote sensing images; however, a for-
mal study of the transferability of features learned by networks
pretrained on remote sensing images has not been conducted
as has been done for object datasets such as ImageNet (e.g.,
[54]). The process of refining the weights in a pretrained neural
network for a new task by updating some or all of the network
weights via training on the smaller, task-specific dataset is
referred to as “fine-tuning.” Penatti et al. [57] showed that the
features learned by architectures pretrained on object datasets
are also useful for aerial and remote sensing images, but were
outperformed by low-level color descriptors for remote sensing
images. Fine-tuned networks were successfully employed for
land-cover classification in remote sensing images in [58]–[62].
In contrast to prior work, we propose using fine-tuned networks
to classify general change in surface features rather than a
specific surface feature or set of features. We initialized the
Inception-v3 network [63] with weights learned from pretraining
on the ImageNet database and replaced the final softmax layer
of Inception-v3 with a new softmax layer with two outputs (for
change and no-change). We fine-tuned the Inception-v3 network
for our change detection task by optimizing weights for this new
softmax layer using our change detection training and validation
datasets.

B. Input Image Representations

The Inception-v3 network requires 3-channel input images,
which are typically RGB color images. Our goal is to represent

a pair of images as a single three-channel image that can be
classified directly. We considered four representations of be-
fore/after image pairs as the input to Inception-v3: composite
grayscale, absolute difference, signed difference, and autoen-
coder bottleneck maps (see Fig. 2). These representations are
analogous to the “units of analysis” discussed in Section II and
constitute various levels of abstraction from the original image
pair. The image filters learned by ImageNet pretraining have
been shown to be useful for application to remote sensing and
other unrelated image datasets (e.g., [54], [57]–[62], [64]–[66]).
In Section V, we report on an evaluation of which representa-
tion is most suitable for classifying change between the image
pair.

1) Composite Grayscale: The datasets described in
Section IV contain 100× 100-pixel grayscale images. We can
use this representation directly. Since the input to Inception-v3
is a single 3-channel image, we created a composite of the
before and after grayscale images in which the blue channel
contains the before image, the green channel contains the after
image, and the red channel contains all zeros.

2) Absolute Difference: In this approach, we computed the
absolute value of the difference between each pixel in the
grayscale before and after images. The resulting single-channel
image is replicated in each of the three input channels.

3) Signed Difference: As in the previous approach, we com-
puted the difference between each pixel in the grayscale before
and after images. Because image formats do not allow negative
values, we rescaled the difference values (which nominally



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KERNER et al.: TOWARD GENERALIZED CHANGE DETECTION ON PLANETARY SURFACES WITH CAE AND TRANSFER LEARNING 5

Fig. 3. Convolutional autoencoder architecture.

range from −255 to +255) into the range [0,255]. The resulting
single-channel image is replicated in each of the three input
channels.

4) Autoencoder Bottleneck Maps: A CAE is a type of self-
supervised neural network that learns a low-dimensional rep-
resentation or “code” capturing the most salient features in
a dataset by optimizing its reconstruction of the original in-
put from the learned encoding, using convolutional layers for
feature extraction [67]. Autoencoders are sometimes called
“encoder–decoders” because they consist of an encoder network
that projects the input into the low-dimensional “bottleneck”
representation and a decoder network that projects from the
bottleneck representation back up to the input space (see Fig. 3).
Once an autoencoder is trained to reconstruct all examples in a
dataset well, the encoder network can be used for dimensionality
reduction. This is similar to dimensionality reduction through
projection into the eigenspace in principal component analysis
[68]. By training an autoencoder to produce representations
at the bottleneck layer that capture the salient features in the
image, we can take advantage of the large dataset of un-labeled
patches in the HiRISE RSL dataset to produce a potentially more
refined representation for the downstream change detection
classifier.

We trained a CAE with images indicated in Column 4 of
Table II. The encoder part of the network consists of three
sequences of 3× 3 convolution, batch normalization [69], and
2× 2max pooling. In the decoder part of the network, we use the
same three sequences but instead of max pooling we upsample
using nearest-neighbor interpolation. We generated bottleneck
map representations by applying only the encoder function of the
trained network. Table I lists the size of image representations
following each layer in the autoencoder. The dimension at the
bottleneck layer is 13× 13× 8, which is ∼7.4 times smaller
than the input dimension. We selected the three (of eight) bottle-
neck maps that were most discriminative for change in surface
features to populate the three input channels to Inception-v3.
To determine which maps were most discriminative, for each
of the eight bottleneck maps, we computed two distributions:
one of the mean squared error between the before and after
image maps for the no-change examples in the validation dataset,
and one for the change examples in the validation dataset. We
computed the Kullback–Leibler (KL) divergence between these

TABLE I
OUTPUT SIZE OF EACH LAYER IN CAE

Asterisk indicates bottleneck representation.

two distributions for each of the eight maps and selected the three
maps with the largest KL divergence. We up-sampled each of
these three feature maps to 100× 100 pixels and populated the
three input channels with these three maps.

C. Baseline Change Detection

Approaches based on image differencing are the most widely
used change detection approaches [6]. Since there is no widely
accepted baseline method for change detection, we designed two
baselines based on common methods in the change detection
literature.
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Fig. 4. Distribution of difference pixels greater than two standard devia-
tions from the mean in each image pair for change and no-change examples
(see Experiment 1).

1) Naive Bayes With High-Change Pixel Values: The under-
lying assumption for difference-based change detection methods
is that the difference in pixel intensity at locations where surface
change occurred will be significantly higher than at locations
where change did not occur (or only occurred due to illumi-
nation or other irrelevant changes). We designed the following
procedure for change detection based on this principle.

1) Apply local contrast normalization to before and after
images using the Contrast Limited Adaptive Histogram
Equalization Algorithm [70].

2) Compute pixelwise difference between before and after
images in training set.

3) Compute mean and standard deviation of distribution of
pixelwise differences for each image pair.

4) Compute number of pixels n in which the pixelwise dif-
ference is greater than two standard deviations from the
mean pixel difference for each image pair.

5) Fit conditional Gaussian probability distributions p(x =
n|y = change) and p(x = n|y = no− change) (see
Fig. 4).

6) Use Naive Bayes [71] to predict class label for test exam-
ples using posterior probabilities:
p(y = {change, no− change}|x = n).

2) SVM With Difference Image: SVMs have been utilized in
prior work for detecting changes at the pixel and image level
using differenced or filtered before/after images as input (e.g.,
[28] and [29]). In a classification setting, SVMs use kernel
functions to transform inputs to a higher dimensional space
in which the classifier finds a linear decision boundary. SVMs
typically generalize well to unseen examples because they find
a decision boundary with maximal margin between the training
data and decision boundary [72]. We used an SVM classifier to
make image-level classifications of change or no-change using
the absolute difference between pixels in the before and after
images, represented as a 1× d feature vector where d is the
number of pixels in the difference image. We used the radial
basis function kernel and determined the hyperparameters for

Fig. 5. Example of 100× 100-pixel patches sampled from HiRISE image
of Garni crater (ESP_027802_1685) where (a) RSL occur, (b) where RSL do
not occur, and (c) where it is difficult to distinguish RSL from other shadowed
topography.

the SVM using grid search and threefold cross validation (see
Appendix B for details).

We performed each experiment in Section V using these
baseline methods with local contrast normalization and without
local contrast normalization (“No LCN”).

IV. DATASETS

A. HiRISE: Recurring Slope Lineae (RSL), Mars

RSL are dark, narrow features (typically 0.5–5 m) that incre-
mentally lengthen down steep slopes and fade/recur throughout
the year. They are thought to be formed by shallow subsurface
liquid water flows [3]. Scientists are actively monitoring RSL for
changes as they develop and evaluate theories on RSL formation
and growth mechanisms [e.g., Fig. 1(a)]. We created a dataset
for change detection of RSL using repeat observations of a
well-studied site with known RSL activity called Garni Crater in
Valles Marineris, Mars [73]. These observations were made by
the HiRISE camera onboard the Mars Reconnaissance Orbiter.
HiRISE has a spatial resolution of ∼30 cm/pixel and three color
channels: red (550–850 nm), blue-green (400–600 nm), and near
infrared (800–1000 nm) [1]. We used the HiRISE red channel
orthorectified products in Table II corresponding to 12 different
acquisition dates. We used the red band because it has the highest
spectral coverage and signal-to-noise ratio [1]. We cropped each
image to the 10 000× 10 000-pixel boundary of Garni crater
and converted to grayscale. Since RSL are relatively small, we
subsampled 100× 100-pixel patches from the cropped images
of Garni crater for our experiments (e.g., Fig. 5). We subsampled
using a sliding window with a stride size of 50 pixels. This
resulted in a dataset of 39 601 patches for each of the 12 images
(475 212 total). The process of subsampling large remote sensing
images for change detection has also been employed in prior
work, e.g., [66], [74]–[76]. These image patches were used to
train the CAE and change detection classification models, as
we describe in more detail in Section IV. In Table II, Column
4 indicates which (unlabeled) images were used to train the
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TABLE II
IMAGE PRODUCTS USED IN THIS ARTICLE

Bullets indicate which part of the article the image was used for.

TABLE III
NUMBER OF EXAMPLES LABELED IN EACH CLASS FOR THREE IMAGE

PAIRS FROM HIRISE RSL DATASET

autoencoder and which (labeled) images were used to train the
classification models. Columns 5 and 6 indicate which (labeled)
images were used for validation and testing with respect to the
classification models.

We selected three bitemporal pairs that exhibited changes in
RSL for labeling (see Table III). We selected bounding boxes sur-
rounding the changed regions and labeled bitemporal patches as
having change or no-change within these bounds by inspecting
animated GIFs transitioning between before and after tiles. We
labeled 203 change and 3333 no-change patches for training, 73
change and 613 no-change patches for validation, and 75 change
and 179 no-change patches for testing (see Table III).

B. CTX: Meteorite Impacts, Mars

The landscape of Mars and other planets is continually altered
by meteorite impacts [see Fig. 1(b)]. Scientists use data about
when and where these impacts occur to refine estimates of
the current cratering rate in our solar system and constrain
the impact production function over time [4]. In one study
of contemporary impact cratering, Daubar et al. [4] reported
248 new impact sites that formed on Mars within the last few
decades discovered by comparing images taken over the same
location at different times from multiple instrument datasets.
We selected eight image pairs (16 images) from Daubar et al.’s
study in which both the before and after images were taken
by the CTX onboard the Mars Reconnaissance Orbiter (see
Table VII). CTX has a spatial resolution of ∼6 m/pixel and

a single channel (500–700 nm) [2]. We map projected and
coregistered each image pair using the PIXL Visual Precision
Targeting algorithm [77]. While this algorithm produces good
coregistration for most regions in the image, some regions are
not perfectly coregistered (e.g., Fig. 6). For each image pair,
we cropped one 150× 150-pixel patch around the approximate
center of the impact and six 150× 150-pixel patches at random
locations in the nonimpact region of the image, then resized the
patches to 100× 100 pixels. We augmented the eight change
patches with horizontally flipped, vertically flipped, and 90◦,
180◦, and 270◦ rotated versions of each tile. We did not augment
the no-change tiles. This resulted in 48 positive (change) and
48 negative (no-change) 100× 100-pixel image pairs in this
dataset. We used this dataset to assess generalization to surface
features, image sensors, and resolution that were different than
in the training set.

C. LROC: Impacts, Moon

Speyerer et al. [5] found that the current lunar cratering
rate is significantly higher than previously thought. These new
estimates, informed by updated images of the lunar surface and
automatic classification methods, improved models of current
cratering rates and surface regolith turnover. These models are
used to constrain the ages of surface features on the moon and
other planetary bodies. To test the transfer performance of the
proposed change detection approaches, we created a dataset of
lunar impacts captured using the Lunar Reconnaissance Or-
biter Camera’s (LROC) Narrow Angle Camera (NAC) [78].
LROC has two identical NACs (for stereo imaging) that collect
∼0.5 m/pixel panchromatic images. Since the LROC mission
began, the NACs have collected a repository of over 1.7 million
500-megapixel images.1 A subset of these images were captured
over the same region under similar illumination conditions at
different points in time. We selected five of these image pairs
in which an impact occurred due to a meteorite or the Chang’e

1[Online]. Available: http://wms.lroc.asu.edu/lroc/thumbnails

http://wms.lroc.asu.edu/lroc/thumbnails
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Fig. 6. Example CTX patches where before and after images are (a) coregistered perfectly and (b) not coregistered perfectly. In (b), the large crater in the first
image is shifted up and to the left in the second image, and many small details in the first image do not appear in the second image). Both patches were cropped
from the same two images: P09_004477_1906_XN_10N100W and P13_006178_1907_XN_10N100W (see Table VII).

lander [79] as reported in Speyerer et al. [5] [e.g., Fig. 1(c)]. In
Table VII, we give the NAC ID for each image as well as the
name used by the LROC mission for each pair in parentheses.
These images were map-projected, radiometrically calibrated,
and coregistered to within 20 m (∼40 pixels). For each pair
of images, we cropped one 100× 100-pixel patch around the
approximate center of the impact and one 100× 100-pixel patch
at a random location in the nonimpact region of the image.
This resulted in five change and five no-change 100× 100-pixel
image pairs in this dataset. We used these images to assess
generalization to a different planetary body (see Experiment 3).

D. PlanetScope: Miscellaneous Processes, Earth

The earth’s surface is continually undergoing change from
natural geologic processes as well as human activity. Planet
Inc. is a commercial remote sensing company that operates a
constellation of small satellites (“cubesats”) that acquire daily
color images of the earth’s surface using their PlanetScope cam-
era [80]. These images have ∼3-m spatial resolution and four
bands: red, green, blue, and near-infrared. The sun-synchronous
orbit of the satellites enables a consistent equatorial overpass
time between 9:30 and 11:30 A.M. local time [81], so images
acquired on different dates typically have similar illumination
conditions. We manually identified before and after images of
four different locations taken at different points in time that
showed changes in surface features on the earth [e.g., Fig. 1(d)];
we give the names of these images in Table VII.2 We chose
desert regions where the landscape would be most similar to the
moon and Mars (Nevada, Saudi Arabia, Ethiopia, and the Gobi
desert). These images exhibit surface feature change due to fire,
oil production, volcanic eruptions, and solar array construction.
We cropped one 200× 200-pixel patch around a change feature
in each before/after pair and one 200× 200-pixel patch in a
region of the image pair without changes in surface features, then
resized the patches to 100× 100 pixels.3 We converted these
RGB images to grayscale. This resulted in five change and five

2We selected images using the PlanetScope Gallery tool. [Online]. Available:
https://planet.com/gallery

3We cropped two patch pairs with and without change from the Erta Ale,
Ethiopia image pair; hence, we refer to these as “Erta Ale 1” and “Erta Ale 2.”
[Online]. Available: https://doi.org/10.5281/zenodo.2373798

no-change100× 100-pixel image pairs, which we used to assess
generalization to a different planetary body (see Experiment 3).

The source images for these four datasets are publicly avail-
able and we provided instructions for accessing them in Ap-
pendix A. The datasets are publicly available online.

V. EXPERIMENTS

We performed three experiments to evaluate the performance
of Inception-v3 for binary change detection after fine-tuning
with each of the four proposed input image representations. We
used TensorFlow [82] for fine-tuning Inception-v3 and Keras4

for the CAE. We describe the details of training, including
number of training steps, and hyperparameter settings, in Ap-
pendix B. Area under the curve (AUC) for receiver operating
characteristics (ROC) curves gives a better indication of model
performance than accuracy, since accuracy depends on a chosen
threshold on the posterior probability. Because we want to detect
as many patches that contain true surface changes as possible,
even at the expense of more false positives, a low false negative
rate (FNR) is more important than a low false positive rate
(FPR), or even an overall high classification accuracy or AUC.
For this reason, we also reported the FPR at 5% FNR to assess
which approach results in the fewest false positives given a 5%
maximum FNR.

A. Experiment 1: Generalization From Train to Test Set

In this experiment, we evaluated the ability of each of four
input representations to Inception-v3 to generalize from detect-
ing changes in one type of surface feature in a training dataset
to detecting changes in that same feature in a held-out test set.
We used the labeled image pairs from the HiRISE RSL dataset
described in Section IV. We augmented the positive-labeled
(change) image pairs from the training and validation sets with
horizontal flips, vertical flips, and 90◦, 180◦, and 270◦ rotations,
resulting in 1218 positive training examples and 438 posi-
tive validation examples. We used the labeled bitemporal im-
age pairs ESP_027802_1685 and ESP_028501_1685 for train-
ing, ESP_030347_1685 and ESP_030769_1685 for validation,
and ESP_029213_1685 and ESP_029780_1685 for testing (see
Table II). We chose to partition the training, validation, and

4F. Chollet, “Keras,” 2015. [Online]. Available: https://keras.io

https://planet.com/gallery
https://doi.org/10.5281/zenodo.2373798
https://keras.io
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TABLE IV
PERFORMANCE METRICS FOR EXPERIMENT 1: TRAIN AND TEST ON HIRISE RSL (MARS) DATASET

Shaded rows and bold values indicate methods with best performance.

Fig. 7. ROC curves for Experiment 1: train and test on HiRISE RSL (Mars)
dataset.

test sets by image pair rather than a random sample from all
available images for two reasons. First, the RSL-forming region
is located on the southern wall of Garni crater in the training
pair but on the northeastern wall of Garni crater in the validation
and test pairs. By sampling the training set and validation/test
sets from different geographic locations within Garni crater, we
avoid overestimating the classifier’s performance with spatial
overlap between the training and validation/test sets. Second,
separating the datasets by acquisition date represents how our
change detection approach would be used in practice during a
science mission. Table IV lists performance metrics and Fig. 7
shows the ROC curves for each representation.

B. Experiment 2: Generalization to New Surface Feature
Type, Instrument, and Misregistration

In this experiment, we evaluated the ability of each representa-
tion to generalize to new geographic locations on Mars (outside
of Garni crater), a new type of surface feature change (meteorite
impacts), a new instrument (CTX), and realistic misregistration
compared to the training dataset. We used the same models that
were trained for Experiment 1. We used the CTX Meteorite

impacts dataset of 96 images (48 change, 48 no-change) as the
test set. Table V gives performance metrics and Fig. 8 shows the
ROC curves for each classification approach in this experiment.

C. Experiment 3: Generalization to New Body

In this experiment, we evaluated how well each representation
enabled generalization to a new planetary body. Specifically, we
wanted to test how general the representations learned by the au-
toencoder were for change detection. We used the same training
set as in Experiments 1 and 2 of HiRISE RSL image pairs. We
tested images of surface feature changes on the moon (LROC
dataset) and on the earth (PlanetScope dataset) as described in
Section IV. For each dataset, we evaluated five image pairs with
surface changes and five image pairs without. In the LROC
dataset, surface changes are the result of meteorite impacts and
a spacecraft landing. These images are map-projected but not
coregistered, so matching features are misregistered by as many
as 40 pixels. In the PlanetScope dataset, surface changes are the
result of natural geologic processes (e.g., lava flows) as well as
some anthropogenic processes (e.g., solar array construction).
These image pairs are precisely coregistered and have very sim-
ilar lighting conditions between before and after images. Figs. 9
and 10 show the images we evaluated in this experiment for the
LROC and PlanetScope datasets, respectively. The third row of
each section in these figures shows the difference between the
autoencoder bottleneck representation of the before image and
the after image for each tested pair. The outline of each image in-
dicates if it was correctly classified (green) or misclassified (red).

VI. DISCUSSION

A. Summary of Findings

We found in Experiment 1 that the Inception-v3 network
fine-tuned using absolute difference image representations of
HiRISE RSL images and the Naive Bayes baseline method
exhibited the best change detection performance on the test
set of HiRISE RSL images from a spatially distinct region of
Garni crater. The Naive Bayes baseline method achieved slightly
higher AUC and lower FPR at 5% FNR values than Inception-v3
with absolute difference representations, and these scores were
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TABLE V
PERFORMANCE METRICS FOR EXPERIMENT 2: TRAIN ON HIRISE RSL (MARS) DATASET, TEST ON CTX METEORITE IMPACTS (MARS) DATASET

Shaded rows and bold values indicate methods with best performance.

Fig. 8. ROC curves for Experiment 2: train on HiRISE RSL (Mars) dataset,
test on CTX Meteorite impacts (Mars) dataset.

closely followed by fine-tuned Inception-v3 using signed differ-
ence image representations (see Fig. 7 and Table IV). However,
when local contrast normalization (LCN in Fig. 7 and Table IV)
is not applied prior to processing with Naive Bayes, our methods
outperformed this baseline by a significant margin. Thus, our
deep learning methods could be used successfully without the
need for preprocessing in change detection pipelines.

The purpose of Experiment 2 was to test how sensitive
the input image representations and the features learned by
each classification method were to the type of surface feature
undergoing change, the sensor that collected the images, and
realistic misregistration. Using a test set where these proper-
ties were different from the training set, we found that the
autoencoder bottleneck representations gave the best change
detection performance overall in this scenario. While the Naive
Bayes baseline method achieved a slightly higher AUC score
(by 0.01), the bottleneck approach yielded the lowest FPR at
5% FNR (14.6%) as well as the highest accuracy of the tested
approaches (see Fig. 8 and Table V). This was a surprising
outcome given that the bottleneck representations resulted in
the worst performance in Experiment 1. We discuss and explore
potential explanations for this in Section VI-B.

In Experiment 3, we evaluated how general the latent repre-
sentations learned by the autoencoder were for different types of
features, sensors, scales, and planetary bodies. The surface fea-
tures in both the LROC impacts and PlanetScope earth datasets
were different than those in training, especially for the earth
examples, as were the imaging sensor and level of misregistra-
tion. We found that the Inception-v3 network fine-tuned with
differenced latent representations of HiRISE RSL image pairs
correctly classified all PlanetScope earth images and three out
of five LROC impacts images tested (see Figs. 9 and 10).

B. Autoencoder Bottleneck Representations

It is interesting that the bottleneck representations yielded
the lowest performance when training and testing on similar
examples (see Experiment 1), but the highest performance when
the train and test examples were significantly different (see
Experiments 2 and 3). Surface changes in the CTX impacts,
LROC impacts, and PlanetScope earth datasets mostly follow
a pattern in which the feature is completely absent from one
image in the pair and then appears in the other image of the pair
(see Figs. 2, 9, and 10). In the HiRISE RSL dataset, changes
tend to be more gradual and often manifest as growing or
receding rather than appearing on a blank slate (see Figs. 1
and 2). Thus, one hypothesis is that the autoencoder is learning
similar representations for both the before and after images in
these cases such that the differenced bottleneck maps are not as
suitable for change detection as they are in the other datasets.
In Fig. 11, we show six images from the change class in the
test set in Experiment 1 that our Inception-v3 with bottleneck
representations approach assigned the highest probability of
change (left) and the lowest probability of change (right). In
Fig. 12, we show six images from the no-change class that
our approach correctly (left) and incorrectly (right) classified.
While this “gradual change” hypothesis could explain some of
the misclassifications, it does not explain all or even most of
them. In some of the misclassified change examples, the RSL
change is on the edge and nearly out of the frame, whereas
features in the other three datasets are (by design) located in the
center of the frame. This would suggest that the autoencoder
encoding function is less effective in representing features that
are only partially in the frame.
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Fig. 9. Change (top section) and no-change (bottom section) image pairs from the LROC impacts (Moon) dataset used for Experiment 3. White arrows point to
the new feature in the after images. The third row of each section shows the difference between bottleneck representations of before and after images. Correctly
classified images are outlined in green and misclassified images in red.

C. Generalization to Different Planetary Bodies

In Experiment 3, we tested how sensitive the change detection
approaches were to the planetary body being studied with test
images of the lunar surface and the earth’s surface instead of
the Martian surface seen during training. The lunar dataset
also had the additional challenges from Experiment 2 in that
the feature-type undergoing change (meteorite and spacecraft
impacts), sensor-type (LROC), and level of misregistration (up
to 40 pixels) were different than in the training images. The
images in the earth dataset were precisely coregistered as in the
training dataset, but the feature-type and sensor-type differed
significantly. Comparing the bottleneck representations of the

misclassified LROC images (see Fig. 9, row 3) with the bottle-
neck representations of the other change image representations
in Figs. 9 and 10, the misclassified representations do not appear
as localized to the surface feature change. In the case of image
572, the representation seems to have picked up on the actual
new impact crater as well as an impact crater that is present in
the before image but not the after image due to misregistration.
The representation for image 260 also appears to have several
false detections in addition to the actual new impact crater,
perhaps due to features that appear in one image but not in the
other due to misregistration. This suggests a limit to the level of
misregistration this approach can successfully tolerate.
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Fig. 10. Change (top section) and no-change (bottom section) image pairs from the PlanetScope (Earth) dataset used for Experiment 3. The third row of each
section shows the difference between bottleneck representations of before and after images. The green outlines indicate that all images were correctly classified.

Comparing the bottleneck representations in Fig. 10 (row 3)
to the corresponding before and after images in Fig. 10 (rows 1
and 2), we see that despite never having seen images of earth or
the types of features in the PlanetScope dataset during training,
the autoencoder is still able to encode useful representations
of the surface features for change detection. This result fur-
ther supports our hypothesis that the autoencoder bottleneck
representations are the most general of those we studied and
might be the most suitable for general purpose change detection
for surface features on planetary bodies. These representations
can also enable a more interpretable approach than the other
compared methods. The representations in Fig. 10 suggest that
the difference between the encodings of before and after images
corresponds to the regions where features changed within the

image. In the future work, we will explore the use of these
encodings to classify change at the region or pixel level given
only patch-level labels.

D. Baseline Performance

We found that the Naive Bayes baseline method exhibited
good performance for the HiRISE RSL, CTX impacts, and
PlanetScope earth test examples, but not for the LROC impacts
examples. In these three datasets, the surface feature exhibiting
change occupies a large portion of the 100× 100 image (see
Figs. 2 and 10). The scale of the impacts in the LROC impacts
dataset is much smaller compared to the features in the other
three datasets. This method depends directly on the number n of
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Fig. 11. Examples from Experiment 1 test set that the Inception-v3 with bottleneck representations method assigned the highest probability of change (left) and
lowest probability of change (right). The true label for all examples shown is change; thus, examples on the right were misclassified.

Fig. 12. Examples from Experiment 1 test set that the Inception-v3 with bottleneck representations method assigned the lowest probability of change (left) and
highest probability of change (right). The true label for all examples shown is no-change; thus, examples on the right were misclassified.

differenced pixels in an image pair that are beyond two standard
deviations from the mean difference in pixels. If n represented
only the pixels where surface feature changes occurred, we
would expect this number to be larger for changes in larger
features (as in the HiRISE RSL, CTX impacts, and PlanetScope
earth images) and smaller for changes in smaller features (as in
the LROC impacts images). InTable VI, we show the mean and
standard deviation of n as a percentage of the total pixels in each
image (100× 100 = 10, 000) for all datasets used for training
or testing. Given the distributions of n in the test datasets shown
in this table, we would expect Naive Bayes to perform well for
the LROC impacts dataset, since its distribution of n is similar
to the training set. Furthermore, we would expect Naive Bayes
to have lower performance on the CTX impacts dataset, since its
distribution of n is the most different from the training set. Yet,
this was not the case. This implies that pixels where a surface
feature change occurred are not always represented by pixels
with the highest difference in intensity, and that difference-based

TABLE VI
MEAN AND STANDARD DEVIATION OF THE NUMBER OF DIFFERENCE PIXELS

n > 2σ (NAIVE BAYES INPUT) AS A FRACTION OF THE TOTAL (100× 100)
PIXELS FOR EACH DATASET USED FOR TRAINING OR TESTING

approaches to change detection will not reliably detect changes
in such examples.

We found that the SVM baseline method exhibited good
performance for all four datasets, but was not competitive with
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Fig. 13. Change map visualization, for example, HiRISE RSL image showing fading RSL, computed by convolving the Inception-v3 with absolute difference
representations change classifier over image. Scale bar represents the average likelihood of change estimated in each pixel.

our Inception-v3 with absolute difference and bottleneck repre-
sentation methods overall. We found that in all experiments, the
performance was better when local contrast normalization was
not applied for this method; this is in contrast to the Naive Bayes
baseline, which depends on the distribution of difference pixels
rather than the spatial pattern of difference pixels as in the SVM
baseline. We also found worse performance for Inception-v3
when local contrast normalization was applied to the absolute
difference image representation. This suggests that local contrast
normalization might be more useful for methods such as the
Naive Bayes baseline that depends on statistical properties rather
than spatial patterns in the image.

VII. CHANGE MAP VISUALIZATION

We trained our classifiers on 100× 100-pixel patches sam-
pled from full-resolution images. In practice, temporal image
pairs that scientists wish to assess for surface feature change
might be in the patch form, e.g., if they are intermediate products
in a map patch server. Most often, image pairs will be two
map-projected, coregistered images that are much larger than
the patch size. In this case, it is useful to produce a change
map across the image pairs using our change detection classifier.
To produce change maps, we convolved the classifiers over the
full-resolution image pair, stored the prediction made for each
tile, and averaged the predictions that were computed over each
pixel to produce a likelihood estimate for each pixel. The stride
size controls the resolution of the change map since pixels will
be visited more frequently (and, thus, more predictions will be
averaged for each pixel) for smaller stride sizes. Fig. 13 shows
the change map for a region in the southern wall of Garni crater
from the HiRISE RSL dataset in which RSL that were present
in the before image have faded away in the after image (before:
ESP_028501_1685, after: ESP_029213_1685). We used the
absolute difference representation and fine-tuned Inception-v3
classifier since this was the best performing approach for this
dataset and a stride size of two pixels.

VIII. CONCLUSION

We presented a new deep learning approach that leverages
transfer learning and CAEs for patch-level change detection
using a relatively small number of training examples. We created
new, diverse datasets that include changes in surface features
such as RSL, meteorite impact craters, and human-made struc-
tures on Mars, the moon, and earth to evaluate this approach for
remote sensing images of multiple planetary bodies. Our exper-
iments showed that our change detection methods outperformed
the difference-based baseline methods with equal preprocessing
for the HiRISE RSL dataset, and regardless of preprocessing
on all other datasets. These experiments revealed a key insight
that changed surface features may not always be represented by
pixels with the highest difference in intensity between before
and after images, which limits their generalization ability. We
showed that latent (“bottleneck”) representations learned by a
CAE provide the most general representation for surface feature
change detection in our article, and that Inception-v3 fine-tuned
with bottleneck representations could detect surface feature
changes even when the feature type, imaging sensor, level of
misregistration, feature scale, and planetary body are different
than in the training dataset.

Future Work: In this article, our experimental approach was to
isolate our change detection datasets by feature type, instrument,
planet, and other properties in order to reveal the strengths
and weaknesses of each input representation. The success of
our change detection methods, in particular the Inception-v3
network using autoencoder bottleneck representations as input,
on examples that deviated significantly from the training set
suggests that variants of these methods hold promise for general-
purpose change detection for surface features on planetary bod-
ies that share similar overall characteristics. We plan to explore
this hypothesis in future work. In this article, our goal was to pre-
dict patch-level labels of change or no-change. In future work,
we will investigate how to leverage bottleneck representations or
class activation maps to predict pixel-level or region-level labels
of change or no-change given only patch-level labels.
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TABLE VII
IMAGE PRODUCTS USED FOR TEST DATASETS

APPENDIX A
ADDITIONAL DATASET DETAILS

In Table II, we provided identifiers of images used for the
HiRISE RSL Dataset and indicated how each image was used in
our experiments. Three more datasets—CTX Meteorite impacts,
LROC impacts, and PlanetScope earth—were used for testing
generalization of the change detection classifiers in Section V.
Table VII gives the identifiers for the images used in these
datasets. We provide instructions for accessing these images in
the following sections.

A. HiRISE RSL Dataset

The HiRISE images we used for this article can be accessed5

<Image ID>, where<Image ID> is the Image ID from Table II.
We used the JP2 black and white (red channel) map-projected
products. To crop the images to the 10 000× 10 000-pixel
region of Garni crater, we used the following ImageMagick
command: convert image.jp2 -crop 10000x10000+3300+12000
cropped_image.jp2.

B. CTX Meteorite Impacts Dataset

The CTX images we used for this dataset can be found6 using
the search tool on the planetary data system (PDS) imaging
node. On the filter menu, select “Mars Reconnaissance Orbiter”
under Mission, “ctx” under instrument, and type the Image ID
from Table VII in the search bar.

C. LROC Impacts Dataset

The LROC images used for this article can be found on the Ari-
zona State University School of Earth and Space Exploration’s
LROC portal available online.7

D. PlanetScope Earth Dataset

The images used for this dataset are browse products from the
Gallery on the Planet website. They can be accessed online.8

APPENDIX B
DETAILS OF EXPERIMENTAL SETUP

To help reproduce the experiments in this article, we provide
details for implementing and training all models in the following
sections.

5[Online]. Available: https://www.uahirise.org/
6[Online]. Available: https://pds-imaging.jpl.nasa.gov/search
7[Online]. Available: http://lroc.sese.asu.edu/featured_sites/lroc_features/

17%20March%202013%20Event/feature_highlights/481
http://lroc.sese.asu.edu/featured_sites/lroc_features/17%20March%

202013%20Event/feature_highlights/490
http://lroc.sese.asu.edu/featured_sites/lroc_features/New%20Crater%

20572/feature_highlights/504
http://lroc.sese.asu.edu/featured_sites/lroc_features/New%20Crater%

20572/feature_highlights/509
http://lroc.sese.asu.edu/featured_sites/lroc_features/New%20Crater%

20260/feature_highlights/491
http://lroc.sese.asu.edu/featured_sites/lroc_features/New%20Crater%

20260/feature_highlights/492
http://lroc.sese.asu.edu/featured_sites/lroc_features/New%20Crater%

20278/feature_highlights/496
http://lroc.sese.asu.edu/featured_sites/lroc_features/New%20Crater%

20278/feature_highlights/497
http://lroc.sese.asu.edu/featured_sites/lroc_features/Chang’e%203%

20Landing%20Site/feature_highlights/553
http://lroc.sese.asu.edu/featured_sites/lroc_features/Chang’e%203%

20Landing%20Site/feature_highlights/558
8[Online]. Available: https://www.planet.com/gallery/china-solar-201701

30/
https://www.planet.com/gallery/khurais/
https://www.planet.com/gallery/ertaale-20170123/
https://www.planet.com/gallery/earthstone-fire-20170705/

https://www.uahirise.org/
https://pds-imaging.jpl.nasa.gov/search
http://lroc.sese.asu.edu/featured_sites/lroc_features/17%20March%202013%20Event/feature_highlights/481
http://lroc.sese.asu.edu/featured_sites/lroc_features/17%20March%202013%20Event/feature_highlights/490
http://lroc.sese.asu.edu/featured_sites/lroc_features/New%20Crater%20572/feature_highlights/504
http://lroc.sese.asu.edu/featured_sites/lroc_features/New%20Crater%20572/feature_highlights/509
http://lroc.sese.asu.edu/featured_sites/lroc_features/New%20Crater%20260/feature_highlights/491
http://lroc.sese.asu.edu/featured_sites/lroc_features/New%20Crater%20260/feature_highlights/492
http://lroc.sese.asu.edu/featured_sites/lroc_features/New%20Crater%20278/feature_highlights/496
http://lroc.sese.asu.edu/featured_sites/lroc_features/New%20Crater%20278/feature_highlights/497
http://lroc.sese.asu.edu/featured_sites/lroc_features/Chang'e%203%20Landing%20Site/feature_highlights/553
http://lroc.sese.asu.edu/featured_sites/lroc_features/Chang'e%203%20Landing%20Site/feature_highlights/558
https://www.planet.com/gallery/china-solar-20170130/
https://www.planet.com/gallery/khurais/
https://www.planet.com/gallery/ertaale-20170123/
https://www.planet.com/gallery/earthstone-fire-20170705/
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Fig. 14. Change map visualization, for example, HiRISE RSL image pair showing fading RSL, computed by convolving the Inception-v3 with signed difference
representations change classifier over the image pair. Scale bar represents the average likelihood of change estimated in each pixel.

Fig. 15. Change map visualization, for example, HiRISE RSL image pair showing fading RSL, computed by convolving the Inception-v3 with composite
grayscale representations change classifier over the image pair. Scale bar represents the average likelihood of change estimated in each pixel.

A. Fine-Tuned Inception-v3

We implemented the Inception-v3 approaches using Tensor-
Flow. Details of how to fine-tune Inception-v3 for new cat-
egories can be found on the TensorFlow website.9 We used
stochastic gradient descent optimization and the sparse softmax
cross-entropy loss function. We used a training batch size of
100 and learning rate of 0.001. We trained a different model for
each image representation until validation loss was minimized,
which resulted in different training times for each representation.
We fine-tuned the absolute difference model for 2220 steps
(∼48 epochs), the autoencoder bottleneck model for 3160 steps
(∼69 epochs), the composite grayscale model for 790 steps
(∼17 epochs), and the signed difference model for 3700 steps
(∼81 epochs).

B. Convolutional Autoencoder

We implemented the CAE using Keras. The size (and, thus,
number of feature maps) is given in Table I. We used 3× 3-
pixel kernels for convolution and 2× 2-pixel kernels for max

9[Online]. Available: https://www.tensorflow.org/hub/tutorials/image_retraining

pooling, both using a stride size of 1 pixel. We used the Adam
optimizer with β1 0.9, β1 0.999, ε 1e− 7, and decay 0.0. We
used a batch size of 100 and learning rate of 0.001. We used the
binary cross-entropy loss function. We trained the autoencoder
for 50 epochs.

C. Baseline Methods

We implemented both the Naive Bayes and SVM baseline
methods using Scikit-learn10 in python. The hyperparameter
settings determined using grid search with threefold cross vali-
dation for the SVM baseline were C = 10, γ = 0.01 with local
contrast normalization andC = 100, γ = 0.1without local con-
trast normalization.

APPENDIX C
ADDITIONAL CHANGE MAPS

In Section VII, we showed an example change map for a
region of Garni crater computed by convolving the Inception-v3
model fine-tuned with absolute difference image representations

10[Online]. Available: https://scikit-learn.org
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Fig. 16. Change map visualization, for example, HiRISE RSL image pair showing fading RSL, computed by convolving the Inception-v3 with autoencoder
bottleneck representations change classifier over the image pair. Scale bar represents the average likelihood of change estimated in each pixel.

over the entire image with a stride size of 2 pixels (see Fig. 13). In
Figs. 14–16, we show the change maps computed by convolving
additional methods tested over the same image pair as Fig. 13.
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