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1  | INTRODUC TION

1.1 | Background on photogrammetry

Accurately measuring the size of animals is essential for wildlife con‐
servation and management, as size can indicate important aspects 

of life history, such as reproductive status, growth rate, energetic 
requirements, phenotypic differences between species and popula‐
tions, and incidents of compromised health related to injury or an‐
thropogenic influences (Blanckenhorn, 2004; Blueweiss et al., 1978; 
Perryman & Lynn, 1993; Schmidt‐Nielsen, 1975). As such, accurate 
and current morphometric data can help establish the status of, and 
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Abstract
1.	 The flourishing application of drones within marine science provides more opportu‐

nity to conduct photogrammetric studies on large and varied populations of many 
different species. While these new platforms are increasing the size and availability 
of imagery datasets, established photogrammetry methods require considerable 
manual input, allowing individual bias in techniques to influence measurements, in‐
creasing error and magnifying the time required to apply these techniques.

2.	 Here, we introduce the next generation of photogrammetry methods utilizing a 
convolutional neural network to demonstrate the potential of a deep learning‐
based photogrammetry system for automatic species identification and measure‐
ment. We then present the same data analysed using conventional techniques to 
validate our automatic methods.

3.	 Our results compare favorably across both techniques, correctly predicting whale 
species with 98% accuracy (57/58) for humpback whales, minke whales, and blue 
whales. Ninety percent of automated length measurements were within 5% of 
manual measurements, providing sufficient resolution to inform morphometric 
studies and establish size classes of whales automatically.

4.	 The results of this study indicate that deep learning techniques applied to survey 
programs that collect large archives of imagery may help researchers and manag‐
ers move quickly past analytical bottlenecks and provide more time for abundance 
estimation, distributional research, and ecological assessments.
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support monitoring programs for populations that may be influenced 
by dynamic environmental factors (Burnett et al., 2018). However, 
obtaining manual measurements of wild animal populations is logis‐
tically challenging, as accessibility can be limited, costly, dangerous, 
and disruptive to the animal (Gaudioso et al., 2014; Trimble et al., 
2011).

Photogrammetry is a non‐invasive method for obtaining accurate 
measurements of animals from photographs. The two main types 
of photogrammetry methods used in wildlife biology are (a) single 
camera, where a known scale factor is applied to a single image to 
measure 2D distances and angles and (b) stereo‐photogrammetry, 
where two or more are used to recreate a 3D model (Gaudioso et 
al., 2014). These techniques have been used to measure body con‐
dition and weight of lactating Mediterranean buffaloes (Negretti, 
Bianconi, Bartocci, Terramoccia, & Verna, 2008), sexual dimorphism 
in Western gorillas (Breuer, Robbins, & Boesch, 2007), shoulder 
heights of elephants (Shrader, Ferreira, & van Aarde, 2006), nutri‐
tional status of Japanese macaques (Kurita, Suzumura, Kanchi, & 
Hamada, 2012), and mass of Weddell seals (Ireland, Garrott, Rotella, 
& Banfield, 2006).

Aerial photogrammetry has been particularly useful in studying 
cetaceans, as they spend most of their life beneath the surface and 
usually reside at great distances from humans (Johnston, 2019). Prior 
to this technique, measurements of cetaceans were traditionally lim‐
ited to assessing carcasses collected via whaling (e.g. Ichii, Shinohara, 
Fujise, Nishiwaki, & Matsuoka, 1998), from bycatch (Read, 1990), 
or from strandings (Garrigue et al., 2016). Aerial photogrammetric 
techniques were later developed to calculate morphometric mea‐
surements in addition to total length, such as allometric growth and 
dorsal width measurements to estimate changes in nutritive condi‐
tion (Ratnaswamy & Winn, 1993). However, occupied aircraft for 
photogrammetry can be expensive (Arona, Dale, Heaslip, Hammill, 
& Johnston, 2018), can limit the number of sampling days (Cosens & 
Blouw, 2003), and present risks for wildlife biologists (Sasse, 2003).

Over the past decade, the affordability and accessibility of small 
unoccupied aircraft systems (UAS, aka drones) has rapidly increased. 
These systems are increasingly being used in projects that span 
the full spectrum of marine science and conservation applications 
(Johnston, 2019), and are now being used in photogrammetric stud‐
ies on a variety of odontocete and mysticete cetaceans across polar, 
temperate, and tropical biomes (Durban, Fearnbach, Perryman, & 
Leroi, 2015; Christiansen, Dujon, Sprogis, Arnould, & Bejder, 2016). 
UAS have improved aerial photogrammetry, as they often pro‐
vide data of similar, if not better, quality than traditional methods 
(Johnston et al., 2017), and are better suited for ephemeral interac‐
tions with marine species that live far from regions that can provide 
aerial imaging support via occupied aircraft.

1.2 | Deep learning and computer vision in 
ecological analysis

The growth of ecological digital imagery, ranging from crowdsourced 
repositories such as iNaturalist (Van Horn et al., 2017), to long 

duration camera trap studies (Burton et al., 2015), to UAS‐based 
surveys (Johnston, 2019), is providing insight into biological diver‐
sity and facilitating a new wave of ecological monitoring. But the 
expertise and time required to analyse this imagery represents a 
major bottleneck. Fortunately, this wealth of imagery, along with ex‐
pert annotation, provides the foundation for accessing the power of 
modern machine learning algorithms. Large datasets combined with 
increasing computing power and advancements in artificial intelli‐
gence are allowing the technical specialist to automate a wide range 
of previously labor‐intensive ecological analyses. Tasks thought in‐
feasible to automate only a few years ago: animal detection, spe‐
cies identification, and even photogrammetry are now within reach 
of the ecological research community (Wäldchen & Mäder, 2018; 
Weinstein, 2017).

Computer vision is an interdisciplinary field concerned with ex‐
tracting insight from digital images and video, often automating 
human tasks such as reading handwritten text, identifying individual 
faces, or informing an autonomous car of its current surroundings 
for navigation. Machine learning (ML) is a subfield of artificial intel‐
ligence that uses statistical techniques to “teach” a computer how 
to do a task by showing it numerous examples of that task being 
done correctly. Conventional ML approaches to computer vision re‐
quire considerable image preprocessing and data transformations in 
a time‐consuming process called feature extraction.

Deep learning is a subfield of ML that uses neural networks to 
automate feature extraction, permitting raw data to be input into a 
computer and creating high‐level abstractions to inform decisions in 
classification, object detection, or other problems (Lecun, Bengio, & 
Hinton, 2015). The majority of recent advances in computer vision 
and object detection have been made with convolutional neural net-
works (CNNs) (He, Zhang, Ren, & Sun, 2016; Krizhevsky, Sutskever, & 
Hinton, 2012; Long, Shelhamer, & Darrell, 2015). CNNs ingest data 
in multidimensional arrays (e.g. 1D: text sequences; 2D: imagery or 
audio; 3D: video) and scan these arrays with a series of windows that 
transform the raw data into higher level features that represent the 
original input data through multiple layers of increasing abstraction.

CNN applications within ecology are becoming widespread, 
including the rapid development of species identification tools 
(Wäldchen & Mäder, 2018). For example, Norouzzadeha et al. (2017) 
were able to identify 48 different animal species from camera traps 
in the 3.2 million image Snapshot Serengeti dataset with 93.8% ac‐
curacy, similar to the accuracy of crowdsourced identifications, sav‐
ing nearly 8.4 years of human labelling effort. Borowicz et al., (2018) 
successfully counted Adélie penguins in UAS imagery, finding their 
CNN‐based results within 10% of manual counts and requiring man‐
ual analysis of only 0.18% of the total area surveyed. More recently, 
Gray et al. (2018) used a CNN to detect and enumerate olive ridley 
turtles in the nearshore waters of Ostional, Costa Rica, identifying 
8% more turtles in imagery than manual methods with a 66‐fold re‐
duction in analyst time.

Applications of deep learning in cetacean studies are few, pri‐
marily hindered by small datasets. Several researchers applied 
CNNs to automate the process of identifying individual right whales 
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Eubalaena glacialis from aerial photos in an online contest (Bogucki 
et al., 2018), with the most successful group able to identify indi‐
vidual right whales among a population of 447 with 87% accuracy. 
Despite their promise, the complexity of implementing deep learn‐
ing approaches, including the burden of obtaining and labelling 
training datasets, has slowed their widespread adoption in ecology. 
Particularly for wide ranging ocean species such as cetaceans, com‐
mon solutions for large scale data collection, such as crowdsourcing 
or using camera traps, are not feasible.

The purpose of the present study is to leverage the power of 
CNNs, and the growing capabilities of UAS, to automate species 
identification and length estimation of whales through the analysis 
of aerial imagery. Implementing and customizing the Mask R‐CNN 
architecture (He, Gkioxari, Dollar, & Girshick, 2017) we take advan‐
tage of transfer learning (Razavian, Azizpour, Sullivan, & Carlsson, 
2014) to analyse whale image datasets of moderate size (N = 384) 
collected in challenging and variable conditions. Transfer learning is 
the concept that features learned by a neural network for one task 
can be useful for another unrelated task (Yosinski, Clune, Bengio, & 
Lipson, 2014) and here we take advantage of this aspect of CNNs, 
pretraining our model on the 300,000 +  image COCO dataset (Lin 
et al., 2014) which does not contain any whales, yet helps the CNN 
develop a general ability to classify imagery. Mask R‐CNN is a large 
model and would overfit drastically on a dataset of only 265 images, 
but leveraging transfer learning we were able to effectively apply our 
model to new data. Specifically, we trained a CNN to identify hump‐
back whales Megaptera novaeangliae, minke whales Balaenoptera 
bonaerensis, and blue whales Balaenoptera musculus in UAS imagery 

and then output a mask of each animal from which we derive length 
(Figure 1). These CNN‐based measurements are then compared with 
manual UAS‐based photogrammetric measurements.

2  | MATERIAL S AND METHODS

2.1 | UAS flights and data collection

We collected UAS aerial images of blue and humpback whales 
off the coast of Santa Barbara and Monterey, California between 
August – September 2017, and humpback and minke whales along 
the Western Antarctic Peninsula (WAP) in March 2018. We used 
two types of UAS hexacopters, the FreeFly Alta 6 (https​://freef​
lysys​tems.com/alta-6) for data collection in California, and an in‐
house hexacopter, LemHex‐44 (https​://sites.nicho​las.duke.edu/uas/
multi​rotor-platf​orms/), for data collection along the WAP. The Alta 
6 has a flight time ~20–25  min, while the LemHex‐44 has a flight 
time ~10–15 min. Both aircraft were fitted with a Sony a5100 cam‐
era with a 50 mm focal length lens, 23.5 × 15.6 mm sensor size, and 
6,000 × 4,000 pixel resolution, as well as a Lightware SF11/C laser 
altimeter that calculates altitude more accurately than the onboard 
barometer. The altitude was divided by the focal length of the cam‐
era to set the ground sampling distance, or scale, of each photo (see 
section 2.4). We used similar methods for hand launch and recovery 
from small boats as described in Durban et al., (2015), with the ad‐
dition of a first person view screen attached to the flight controller, 
enabling the pilot to frame the whale and then manually trigger the 
shutter with a remote connection to collect images. The camera and 

F I G U R E  1   Automated photogrammetry workflow. (1) Unoccupied aircraft system (UAS) operations were conducted to collect imagery. 
(2) A convolutional neural network (CNN) for object detection and instance segmentation was applied to the image, generating a mask 
outlining the cetacean of interest and a species prediction with a prediction confidence score. (3) Principal component analysis (PCA) was 
applied to the mask to find its major axis. (4) The cetacean was measured along this axis, obtaining a length in pixels from the anterior tip 
of the lower jaw to fluke notch and (5) this measurement was converted to meters using the focal length, sensor size, pixel resolution, and 
altitude. (6) This derived length is then combined with the species and confidence score as the final workflow outputs

 2041210x, 2019, 9, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.13246 by D
uke U

niversity, W
iley O

nline L
ibrary on [03/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://freeflysystems.com/alta-6
https://freeflysystems.com/alta-6
https://sites.nicholas.duke.edu/uas/multirotor-platforms/
https://sites.nicholas.duke.edu/uas/multirotor-platforms/


     |  1493Methods in Ecology and Evolu
onGRAY et al.

laser altimeter were mounted on a gimbal and images were collected 
at nadir with the animal full frame lengthwise. Images were col‐
lected at altitudes between 30–80 m above sea level and at speeds 
between 0 and 3  m/s to maintain the whale in full frame. Images 
were collected in bursts as the whale surfaced or was just below 
the surface.

2.2 | Convolutional neural network architecture

For accurate and automated photogrammetry, with the potential for 
multiple animals in each image, the CNN must successfully complete 
instance segmentation – the task of mapping each pixel in an image 
to a particular class and separating each instance of that class. This 
allows identification of individual whales within a single image and 
generates a pixel mask for each. For more detailed information on 
general CNN architecture and theory, see Lecun et al. (2015). In this 
study we implemented Mask R‐CNN (He et al., 2017) which builds 
on the foundational work of Faster R‐CNN (Ren, He, Girshick, & Sun, 
2017) and is capable of ingesting an image and outputting a bound‐
ing box around each object of interest, a class for each object (e.g. 
whale species), and a full pixel mask of the object within each bound‐
ing box.

The first layer of a CNN typically creates maps of features such 
as edges, curves, and color gradients. The feature maps created in 
deeper layers in a CNN are more abstract and aggregate the previ‐
ous layer's feature maps, creating combinations of the simple fea‐
tures from the previous layer that in our case may indicate pectoral 
flippers, flukes, or particular body shapes. Through this process, the 
CNN extracts the distinguishing features that will permit effective 
classification (Figure 2b). Typically, a fully connected layer takes the 
final feature maps, representing useful and high‐level image compo‐
nents, and learns a mapping from those feature maps to the output 
classes.

Faster R‐CNN (Ren et al., 2017), the predecessor to our imple‐
mentation in this study, builds on this typical CNN structure by add‐
ing a Region Proposal Network (RPN) at the final feature map step 
(Figure 2c). This RPN passes a sliding window over the feature maps 
and generates many bounding box guesses, along with a score es‐
timating how likely the bounding box contains an object that is in 
a class of interest. The four corners of these proposed regions are 
then passed to the fully connected layers where they are fine‐tuned, 
and the bounding box is classified (Figure 2d). This architecture, an 
RPN sitting directly on the CNN feature map, has led to one of the 
most successful object detection algorithms (Huang et al., 2017).

Mask R‐CNN builds on this with a straightforward, yet break‐
through, step for instance segmentation by adding another branch 
(Figure 2e) that ingests the CNN feature map and runs in parallel 
to the classification and bounding box fine tuning. This new branch 
outputs a mask of 1s and 0s for each region proposed by the RPN, 
indicating object (1) or non‐object (0). As its final step these three 
outputs are combined, resulting in full instance segmentation 
(Figure 2f). For this study we used Mask R‐CNN with ResNet101 (He 
et al., 2016) as the feature extracting CNN (Figure 2a).

2.3 | Convolutional neural network 
training and validation

This CNN was trained on 326 images total, split evenly across 
species, with 265 for training and 61 for validation (Figure 3). 

FI G U R E 2 Overview of the Mask R‐CNN structure. (a) An image is 
input first into a standard convolutional neural network (CNN) in order 
to extract meaningful features from the image. This CNN consists of a 
series of convolutional layers and max pooling layers. The initial layers 
typically create maps of features such as edges and curves. Feature 
maps created in deeper layers are more abstract, creating combinations 
of features (e.g. pectoral flippers, flukes). Through this process, the 
CNN extracts the distinguishing features that will permit effective 
classification. This process creates a set of (b) feature maps. (c) A region 
proposal network (RPN) proposes various bounding boxes from these 
feature maps that may contain objects of interest and these bounding 
boxes are passed in parallel to (d) a series of fully connected layers which 
refines the bounding box corners and makes a class prediction and (e) 
the mask branch which decides precisely which pixels in the bounding 
box belong to the object of interest. This leads to (f) predictions for a 
bounding box, a class, and a mask for pixel‐wise segmentation. In this 
example orange represents the animal's left flipper, blue the right flipper, 
and green represents the main body and fluke
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Fifty‐eight additional images (17 blue whale, 30 humpback whale, 
and 11 minke whale), all of different individuals, were then used 
for testing species ID and comparing the automated measurement 
method versus manual methods on this previously unseen data. 
Using a species ID label and masks manually drawn to delineate 
the body and pectorals in each image, the CNN was trained to 
optimize the performance of the model on a multi‐task loss func‐
tion minimizing the errors in RPN class, RPN bounding box, final 
class, final bounding box, and final mask with respective ratios of 
1, 2, 2, 2, 5 in order to prioritize the mask itself above all other 
components. This loss function was optimized using stochastic 
gradient descent (SGD), with a learning rate of 0.001, momentum 
of 0.9, and weight decay of 0.001. Training was initialized with the 
Microsoft COCO dataset (Lin et al., 2014), after which training of 
the heads with the rest of the network frozen was done for 69 
epochs, followed by training of ResNet101 layers 5 and up for 16 
epochs, followed by training of ResNet101 layers 3 and up for 61 
epochs, and finally training of the entire model for 34 epochs. 
Model parameters were selected from epoch 174 which presented 
the lowest loss on the validation set of N = 61. Training took 2 days 
using an NVIDIA Tesla K80 with 12GB of memory.

2.4 | Measurement method

2.4.1 | Manual

UAS images were manually selected to measure the total length 
of individual whales if the animal appeared straight with minimal 
curvature, was at the surface or just below, and the outer edge of 
the lower jaw and fluke notch were both clearly visible. All manual 
measurements were performed using ImageJ 1.5i. The segmented 
or straight‐line tool was used to draw a line from the tip of the lower 
jaw to the fluke notch to measure the distance in number of pixels. 
The total length of the whale was then calculated using similar meth‐
ods as Fearnbach, Durban, Ellifrit, and Balcomb (2011), by multiply‐
ing the number of pixels and the ground sampling distance (GSD) 
(Equation 1). GSD was calculated using Equation 2.

where a = altitude (m), f = focal length (mm), and Sw = width of sensor 
size (mm), and Pw = the width of the image resolution in pixels. The 
width was used for the sensor size and image resolution because the 
whale was captured full frame widthwise.

In addition, masks were manually drawn to delineate whales 
for training the CNN and used to compare measurements based on 
manual masks to measurements based on masks predicted by the 
CNN. All manual masks were drawn using the VGG VIA software 
(http://www.robots.ox.ac.uk/~vgg/softw​are/via/) (Figure S1).

2.4.2 | Automated

CNN‐based measurements were generated using a five‐step work‐
flow (Figure 1). Following UAS operations the trained Mask R‐CNN 
model was run on the image, generating a mask delineating the ce‐
tacean of interest (Figure 4), a species prediction, and a confidence 
score from 0.0 to 1.0 in the species prediction. Principal component 
analysis (PCA) was conducted on this mask to find the major axis 
(first eigenvector) in order to measure the full length. The mask was 
measured along that axis, obtaining a length in pixels from lower 
jaw to fluke notch. This measurement was converted to meters 
(Equations 1, and 2) resulting in a length along with the species and 
prediction confidence score.

3  | RESULTS

3.1 | Measurements

Measurement results were similar between CNN and manual meth‐
ods (Figure 5). A comparison of CNN‐based length versus conven‐
tional manually measured length for all three species is presented in 
Figure 6a. There is a mean difference of 0.31 m between CNN‐based 
lengths and manual lengths across all three species. Two compari‐
sons were identified as extreme outliers for the model, one of a blue 
whale and one of a humpback whale. The outlier blue whale compari‐
son was conducted on mask derived from a picture that contains a 
boat approaching a whale to tag it (Figure 6b). The humpback outlier (1)Total Length (m)=#pixels∗GSD

(2)GSD=(a∕f) ∗
(

Sw∕Pw
)

F I G U R E  3   Overview of Mask R‐CNN 
model development, application and 
output as applied to unoccupied aircraft 
system (UAS) imagery of cetaceans
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stems from mask derived from a photo that has a whale producing a 
large blow that obscures part of the back of the animal (Figure 6c). 
Figure 7 shows the distribution of differences between the CNN‐
based measurements and the manual lengths, and while blue whales 
appear to have a much larger difference it is worth noting that pro‐
portionally the differences are similar, −2.8% for blue whales, −1.5% 
for humpback whales, and −2.4% for minke whales (Figure 6d).

3.2 | Species identification

The CNN correctly predicted whale species in 57 of 58 (98%) images 
and 95% of automated measurements were within 5% of manual 

measurements with a maximum difference in one example of 13%. 
All species prediction confidence scores output from the CNN were 
above 80%, except the one misclassified individual which had a pre‐
diction confidence score of 63%.

3.3 | Comparison to manual masks

Comparisons between manual masks and CNN‐based masks were 
assessed through an intersection over union (IoU) approach. This 
approach is a common evaluation metric for object detection and 
instance segmentation and reports the area of overlap between two 
masks divided by their area of union (He et al., 2017). Intersection 

F I G U R E  4   Examples of mask and 
bounding box outputs generated from 
the trained Mask R‐CNN model. (a) 
An unoccupied aircraft system (UAS) 
image of a minke whale and its (b) single 
mask output and (c) a UAS image of two 
humpback whales and its (d) multiple mask 
output

Si
ng

le
 m

as
k

M
ul

tip
le

 m
as

ks

(a) (b)

(c) (d)

F I G U R E  5   Overall results for 
convolutional neural network (CNN)‐
based measurements are similar to 
manual methods. In addition to the box 
plots showing the distribution of lengths, 
the center data bar presents mean 
measurements and standard deviation 
in meters. Minke whales had the least 
difference in mean total length between 
both methods, followed by humpbacks, 
and then blues. Humpbacks had the 
widest size range compared to the other 
baleen whales
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over union (IoU) in this study compares very favorably with other 
studies in instance segmentation (where >0.5 is typically considered 
a good detection) with a mean IoU of 0.85 and standard deviation 
of 0.05 when comparing manually drawn masks to predicted masks. 
Detection rate is also typically presented in terms of precision (pro‐
portion of detections were true positives) and recall (proportion of 
true positives were detected). Since the whales were large and typi‐
cally easy to detect, no false negatives were generated in the test 

imagery and the only false positive was the tagging boat, leading to 
a precision of 0.983 and a recall of 1.0.

To isolate the PCA‐based approach used to generate lengths 
from masks from the error in the CNN predictions and assess, it on 
its own we used it to derive lengths from manually drawn masks and 
compared these with the manual linear method, leading to a mean 
difference of 0.06  m, considerably under the mean difference of 
0.31 m for CNN‐based lengths. This demonstrates that the error in 
estimated length is primarily driven by the automated mask gener‐
ation, and not with the PCA‐based estimation of length from that 
mask.

4  | DISCUSSION

4.1 | Historical context and ecological insights

The results of the present study provide the first example of how 
CNNs can be applied to automatically identify marine mega verte‐
brate species and subsequently estimate their length. The CNN per‐
formed well in both tasks, and with further training could be applied 
confidently in studies seeking to rapidly assess imagery datasets 
of other species. Our results are consistent with other total length 
ranges of whales reported by other studies (excluding calf sizes) 
using UAS photogrammetry on blue whales (Durban et al., 2016) 
and humpback whales (Christiansen et al., 2016). We also present 
the first photogrammetry results for Antarctic minke whales. Our 
results yield a slightly wider size range of minke whales encompass‐
ing smaller animals compared to historical reports from harvests 

F I G U R E  6   (a) Comparison of CNN‐based length versus conventional manually measured length for all three species. The 1:1 line 
indicates that automated measurements tracked manual measurements closely but slightly underestimated length, particularly for blue 
whales. Two comparisons were identified as outliers for the model, one of a blue whale (b) and one of a humpback whale (c). The outlier blue 
whale image contains a boat approaching a whale to tag it and the humpback outlier stems from an image that has a whale producing a large 
blow that obscures part of the back of the animal. (d) The difference in manual versus predicted lengths across scale with the two outliers 
removed. The dashed line indicates the mean difference across all measurements (−1.7%)

F I G U R E  7   Histogram showing the differences between the 
predicted length from the convolutional neural network and the 
manually measured lengths in meters. This distribution shows the 
slight underestimation in general and increased underestimation of 
blue whales
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(Armstrong & Siegfried, 1991). This may be a result of bias towards 
sampling larger individuals during scientific harvests, morphological 
differences between coastal and pelagic Antarctic minke whales, or 
a bias in our imagery of finding whales that were approachable.

The present study builds upon previous work (see Karnowski, 
Johnson, & Hutchins, 2016 for a brief review) by providing species 
identification and length estimation in a single automated pipeline. 
Photogrammetric measurements of whales have not been previ‐
ously automated, and still require considerable analyst effort even 
with streamlined computer workflows for image preparation and 
presentation. The model additionally outputs a confidence score 
along with its species prediction, this can be used as a simple filtering 
mechanism by using an empirically determined confidence threshold 
(80% in our model) as a flag for manual verification.

In previous work, reported measurement errors ranged from 
1%–5%, providing enough precision and accuracy to detect rela‐
tively minor changes in overall body condition of animals related to 
breeding activities (Christiansen et al., 2016). In our current CNN, 
measurement errors much greater than 5% of body length were re‐
stricted to outliers arising from novel and complicated images being 
presented to the CNN (Figure 6). In spite of these outliers, our CNN‐
based approach provides sufficient accuracy to establish different 
age classes in baleen whales (adult vs. juvenile or calves) based on 
length. If these error proportions are similar for girth measurements 
there should be sufficient resolution to assess smaller changes in 
body size, including body condition measurements (Christiansen et 
al., 2016).

4.2 | Caveats and considerations

Nearly all differences in length measurements when comparing the 
automated method to the manual are due to a slight underestimation 
of length in the automated method. Much of the training data was 
from different images of the same individuals, thus while it was cap‐
turing some variation in positioning and body morphology, it was not 
truly capturing a huge variation in animals and conditions. Humpback 
and minke whales have similar coloration and more contrast with the 
water, potentially accounting for the increased accuracy over blue 
whale measurements.

Some of the largest errors in measurements appear to stem from 
novel phenomena in the input imagery. For example, one image of a 
blue whale was mis‐measured by the CNN by 2.3 m, well above the 
idealized 5% error threshold for length measurement. In this case, the 
input image has an approaching zodiac from a tagging event, which 
washed the caudal portion of the whale with the wake (Figure 6). 
Similarly, the humpback outlier had a large respiratory blow, which re‐
sulted in the CNN truncating the mask. It is likely that the lack of boats 
and blows in the training imagery resulted in these errors. It is our as‐
sumption that given more examples of these phenomena in the train‐
ing data, as long as they do not actually obscure the image, they would 
be relatively easily handled by the CNN, as evidenced by other applica‐
tions of Mask R‐CNN that gracefully handle partially obscured classes 
of interest (He et al., 2017). Interestingly, these novel phenomena did 

not influence the correct identification of whale species. The CNN 
was able to deal with multiple animals and naturally occurring envi‐
ronmental parameters (e.g. sea ice) without degradation in accuracy, 
likely due to the prevalence of these conditions in training imagery. 
Despite overall accuracy in length and species predictions the present 
CNN appears to have trouble resolving the tips of flukes and fins (e.g. 
the minke pectoral fins in Figure 4b), and as such would be unlikely to 
provide robust morphometrics of control surfaces. While there were 
some non‐whale objects in our imagery (e.g. sea ice, boats) they were 
quite limited compared to what one may find in aerial imagery of many 
terrestrial or near‐shore habitats. The additional variability in other 
habitats, and thus added potential for mis‐classifications, will likely 
call for more training data, sufficiently representing these other object 
classes, to reach acceptable accuracies. While precise estimates aren't 
feasible, training sample sizes in the high hundreds to low thousands, 
combined with transfer learning, will likely lead to these acceptable 
accuracies (Guo, Liu, Georgiou, & Lew, 2018).

While the manual method can currently be considered the most 
accurate approach to length estimation in photogrammetric studies 
of whales, it still suffers from variation associated with the analyst 
making the measurements. Indeed, manual measurements made by 
multiple individuals can vary, and has been shown to have a coeffi‐
cient of variation (CV) < 1% (Christiansen et al., 2018). We added a 
second researcher to manually measure each whale in each image 
to test this variation and had a mean CV of 0.38%, with an average 
difference of 7 cm between measurements. The automated method, 
once trained and set, has negligible variation in each run, and once 
trained with more data, may provide a better tool for comparing fine 
differences in length of individuals.

The mean error in our study (0.31 m), may not be sufficient res‐
olution to determine age and sex class of other smaller animals such 
as dolphins, porpoises, turtles, and smaller terrestrial animals, but 
errors are based on sensor size and altitude, not the true size of the 
objects. Thus, if you can capture images closer to the animals, error 
will be reduced and similar error proportions as demonstrated in this 
work (2.1% of total length) can be achieved for much smaller target 
organisms. Ongoing improvements in sensor size and UAS altitude 
error will further facilitate analysis of smaller organisms.

4.3 | Future work

While adoption is still early, deep learning techniques are beginning 
to have a major impact in ecology and the environmental sciences 
where new methods of data collection, (e.g. UAS, satellites, camera 
traps) generate vast quantities of information. As deep learning con‐
tinues to mature, it is critical that it be integrated into the ecology 
and conservation communities as a powerful new tool to understand 
our natural world. Future work within cetacean photogrammetry 
includes extending this system to additional species, adding other 
morphometric and allometric measurements such as girth, fluke 
width, rostrum to blowhole, etc., and eventually adding keypoint de‐
tection to conduct full behavioral analysis in video. If cetacean sur‐
veys are routinely conducted by UAS rather than ships and planes 
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these automated capabilities will facilitate analysis and allow rapid 
management and ecological insights.

5  | CONCLUSIONS

The results of this study indicate that deep learning techniques can 
enhance photogrammetric workflows aiming to identify and accu‐
rately measure baleen whales (and likely other species) in aerial im‐
agery rapidly. The techniques described above, if applied to aerial 
survey programs that collect large archives of imagery, may help 
researchers move quickly past analytical bottlenecks and provide 
more time for abundance estimation, distributional research and 
ecological assessments. As UAS platforms evolve towards longer 
flight times and better sensor packages, automated workflows like 
the one presented here will be crucial for moving from data collec‐
tion to inference and knowledge.
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