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1  | INTRODUC TION

Accurate and efficient population estimates are crucial for ecologi-
cal studies and wildlife management (Cohen, Jonsson, & Carpenter, 

2003; Krebs, 1978). For many marine megafauna species, these 
data are difficult to collect because the animals spend much of 
their time under water, move rapidly over large areas and occupy 
remote habitats. As a result, aerial surveys are commonly used to 
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Abstract
1. Marine megafauna are difficult to observe and count because many species travel 

widely and spend large amounts of time submerged. As such, management pro-
grammes seeking to conserve these species are often hampered by limited infor-
mation about population levels.

2. Unoccupied aircraft systems (UAS, aka drones) provide a potentially useful 
 technique for assessing marine animal populations, but a central challenge lies in 
analysing the vast amounts of data generated in the images or video acquired dur-
ing	each	flight.	Neural	networks	are	emerging	as	a	powerful	tool	for	automating	
object detection across data domains and can be applied to UAS imagery to gen-
erate new population-level insights. To explore the utility of these emerging tech-
nologies in a challenging field setting, we used neural networks to enumerate 
olive ridley turtles Lepidochelys olivacea in drone images acquired during a mass-
nesting event on the coast of Ostional, Costa Rica.

3. Results revealed substantial promise for this approach; specifically, our model de-
tected 8% more turtles than manual counts while effectively reducing the manual 
validation burden from 2,971,554 to 44,822 image windows. Our detection pipe-
line was trained on a relatively small set of turtle examples (N = 944), implying that 
this method can be easily bootstrapped for other applications, and is practical 
with real-world UAS datasets.

4. Our findings highlight the feasibility of combining UAS and neural networks to 
estimate population levels of diverse marine animals and suggest that the automa-
tion inherent in these techniques will soon permit monitoring over spatial and 
temporal scales that would previously have been impractical.
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collect population data for these largely inaccessible species, and in 
recent years, researchers have turned to unoccupied aircraft sys-
tems (UAS, or drones) for these tasks (Johnston, 2019). Surveying 
populations using UAS can be less logistically challenging than tra-
ditional methods, and can also reduce costs and human risk (Arona, 
Dale,	Heaslip,	Hammill,	&	Johnston,	2018)	without	sacrificing	data	
quality	 (Hodgson	et	al.,	2018;	 Johnston	et	al.,	2017).	Such	surveys	
have been successfully undertaken with a number of animals, includ-
ing	 dugongs	 (Hodgson,	Kelly,	&	Peel,	 2013),	 seals	 (Johnston	 et	al.,	
2017;	Seymour,	Dale,	Hammill,	Halpin,	&	Johnston,	2017),	sea	turtles	
(Sykora-	Bodie,	Bezy,	Johnston,	Newton,	&	Lohmann,	2017)	and	sev-
eral	seabird	species	(Hodgson,	Baylis,	Mott,	Herrod,	&	Clarke,	2016).

Globally, six of the seven marine turtle species are listed on the 
IUCN	Red	 List	 of	 Threatened	 Species	 under	 various	 categories	 of	
extinction risk. Estimating the abundance of sea turtle populations 
is important for conservation efforts, as is developing robust es-
timates of density in specific breeding, foraging and nesting areas 
where negative interactions may occur (James, Ottensmeyer, & 
Myers, 2005). This may be especially true for species like olive rid-
ley sea turtles that exhibit mass nesting, and which aggregate in 
extraordinarily dense concentrations in coastal areas. While UAS- 
based methods can facilitate these population assessments (Rees 
et al., 2018), an essential part of surveys is analysing the resulting 
images and videos to determine the number of turtles present. Until 
now, analyses of this type have typically been carried out by trained 
observers who carefully view each image and count the number of 
animals present (Sykora- Bodie et al., 2017), but because these analy-
ses are time- consuming and labour- intensive, they place a significant 
constraint on UAS surveys.

One possible way to overcome problems with analysing images 
from drones is to automate methods for the detection, localization 
and enumeration of target animals. Computer vision techniques have 
the potential to greatly increase the efficiency, repeatability and 
precision of image assessments and overcome bottlenecks posed 
by large imagery datasets (Weinstein, 2017). Indeed, a variety of 
computer vision and machine learning techniques have been applied 
to assess wildlife populations using data collected not only by UAS 
imagery (Seymour et al., 2017), but also by camera traps (Schneider, 
Taylor, & Kremer, 2018; Weinstein, 2018), traditional aerial imagery 
(Chabot, Dillon, & Francis, 2018) and satellites (Fretwell, Staniland, & 
Forcada, 2014; Lynch & Schwaller, 2014; Moxley et al., 2017).

Several of these studies have applied modern object- based image 
analysis and conventional machine learning methods, but interest in 
deep- learning techniques for more complex detection of specific 
objects within images and video has been growing. Convolutional 
neural	 networks	 (CNNs),	 a	 prominent	 category	 of	 deep-	learning	
classifier inspired by the neural connections in the human brain, 
are a fundamental source of recent computer vision advances and 
allow efficient discrimination of objects in noisy and complex envi-
ronments	 (Lecun,	Bengio,	&	Hinton,	2015).	Although	CNN	models	
have typically been applied to large- scale computer vision and image 
recognition problems, such as efficiently differentiating millions of 
images into thousands of classes of objects from standardized image 

libraries	such	as	ImageNet	(Krizhevsky,	Sutskever,	&	Hinton,	2012),	
they have also been applied to other domains such as image and 
video data collected for ecological analysis.

Camera	 traps	have	been	an	early	 testbed	 for	CNNs	applied	 to	
ecological data. Camera traps are easy to operate and generate high- 
resolution imagery, but typically collect many unwanted frames due 
to	false	camera	triggering.	CNNs	have	shown	considerable	ability	to	
detect objects of interest, such as birds and mammals, from these 
sources	 (Gupta	&	Verma,	2018;	Schneider	et	al.,	 2018;	Yousif,	He,	
&	Kays,	2018).	Progress	has	also	been	made	 in	CNN-	based	detec-
tion of animals in UAS imagery. For example Borowicz et al. (2018) 
successfully	counted	Adélie	penguins	using	a	CNN	 (Szegedy	et	al.,	
2015).	Beyond	enumeration,	CNN	approaches	can	be	used	to	iden-
tify between many species. One recent study was capable of differ-
entiating	nearly	600	common	North	American	bird	species	with	only	
4%	error	rates	in	classification	(Van	Horn	et	al.,	2015).	Additionally,	
these methods can potentially be applied in the acoustic realm, 
inasmuch	 as	 a	 CNN	 exists	 for	 monitoring	 a	 population	 of	 bats	
through automated detection of their echolocation signals (Aodha 
et al., 2018). The reduction in required human effort from apply-
ing	 these	 systems	 can	 be	 considerable.	Norouzzadeh	 et	al.	 (2017)	
found	their	CNN	could	 identify	animals	 in	99.3%	of	the	3.2	million	
image Snapshot Serengeti dataset with the same accuracy as their 
crowdsourced identifications, saving volunteers the equivalent of 
8.4 years of human labelling effort.

Although	promising,	CNNs	can	be	prohibitively	complex	to	 im-
plement. Moreover, they are computationally intensive and may 
require more data than is practical for most ecological studies. For 
example, Merlin used upwards of 50,000 images generated through 
human	annotation	to	distinguish	among	bird	species	(Van	Horn	et	al.,	
2015). Although details vary widely across studies, and although mit-
igation strategies such as transfer learning do exist, the application 
of these techniques to real- world problems clearly poses significant 
technical challenges.

In this study, we explored the feasibility of using sophisticated 
yet accessible deep- learning techniques to increase the efficiency 
of an aerial- image- based population assessment for sea turtles. 
Specifically,	we	 used	 a	CNN	 to	 detect	 and	 enumerate	 olive	 ridley	
sea turtles in UAS- generated imagery from at- sea surveys con-
ducted during a mass- nesting event in Ostional, Costa Rica. To our 
knowledge,	this	is	the	first	use	of	CNNs	for	detecting	sea	turtles	in	
aerial imagery and demonstrates the broad applicability of combin-
ing UAS- based data collection with neural networks for monitoring 
populations of marine animals.

2  | MATERIAL S AND METHODS

2.1 | Study area

At- sea surveys of marine turtles were conducted in nearshore (<3 km 
from land) waters of the Pacific within the marine protected area at 
the	Ostional	National	Wildlife	 Refuge	 on	 the	Nicoya	 Peninsula	 of	
Costa Rica (Figure 1). The refuge extends 200 m inland from the high 
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tide line and approximately 5.5 km offshore. Mass- nesting events of 
olive ridley sea turtles occur at Ostional Beach almost every month 
of the year. Peak nesting season coincides with the rainy season 
(May–November).

2.2 | UAS imagery and collection

Aerial surveys were conducted using an eBee (senseFly SA) fixed wing 
UAS, a modular UAS constructed of light- weight foam and powered 
by a single electric motor in push configuration (Sykora- Bodie et al., 
2017). The UAS was outfitted with a Canon PowerShot S110 near- 
infrared	(NIR)	camera	to	capture	aerial	photographs.	Initial	tests	with	
NIR	 and	 traditional	 red-green-blue	 imagery	 revealed	 that	NIR	 im-
agery provides superior contrast that facilitates detection of turtles 
in surface waters. Images were collected during transects designed 
for estimating turtle densities in nearshore waters (Figure 1, and see 
Sykora- Bodie et al., 2017). Flights were conducted opportunistically 
during daylight hours, regardless of tidal state or sun angle. A total 

of 20 UAS flights were conducted along four transects perpendicu-
lar	to	the	beach	(five	flights	per	transect)	during	August	6,	7,	8	and	
9,	 generating	 a	 series	of	 overlapping	 false-	colour	NIR	 jpeg	 images	
(N = 1,059, 12.1 megapixel, pixel dimensions = 4,048 × 3,048).

2.3 | Image processing and human counts of turtles

To	 generate	 the	 dataset	 of	 labelled	 turtle	 locations,	 467	 of	 the	
1,059 UAS images were used. Using iTag (https://sourceforge.net/ 
projects/itagbiology/;	 version	 0.6),	 three	 independent	 reviewers	
tagged	turtles	 in	the	image	set,	taking	approximately	6	hr	for	each	
reviewer to go through all of the images (Sykora- Bodie et al., 2017). 
A subset of these manually reviewed images (N = 275) were used 
for model training and the remainder (N = 192) were used for direct 
comparison	of	counts	between	manual	review	and	CNN	detection.	
As described previously in Sykora- Bodie et al. (2017), reviewers 
used pre- set identification criteria to assign each possible turtle into 
one of two categories, “certain” or “probable.” Certain turtles were 

F IGURE  1 Map of the study site at Ostional, Costa Rica with an overview of unoccupied aircraft system (UAS) flight paths. Imagery 
Sources: Esri, DigitalGlobe
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those in which appendages were visible and definitive identification 
was possible. Probable turtles were objects that resembled turtles 
in size, shape and colour, but could not be identified with certainty. 
For each photograph, the number of certain and probable turtles 
was determined. The location (x, y pixel coordinates) of each known 
or putative turtle within the image was also recorded in iTag. The 
GPS coordinates of each image were collected in WGS84 and were 
transformed	into	a	Universal	Transverse	Mercator	(UTM)	Zone	16N	
projection, which is a square grid with constant distances in metres. 
Pixel locations in each image were converted to UTM coordinates 
for each turtle detection. After counts were completed, turtle de-
tections were compiled into a text file with (x, y) coordinates of the 
centre of each identified object. The subset used for training had 
N	=	616	certain	turtle	labels	and	N = 328 probable turtle labels. The 
subset	used	for	comparison	between	manual	counts	and	CNN	de-
tection had N = 384 certain turtle labels and N = 253 probable turtle 
labels. For training and validation, data from these two categories 
were grouped together into a single class to facilitate automated as-
sessments of detection.

2.4 | Deep- learning model

An overview of the workflow applied to imagery acquired by the UAS 
is provided in Figure 2. Briefly, the imagery dataset was first partitioned 
into two components. One was manually labelled while the other was 

reserved for testing the model. The labelled data were used to train 
and	validate	the	CNN	and	assess	its	initial	performance.	Once	the	CNN	
was	trained,	the	testing	data	were	run-	through	the	CNN	to	detect	and	
enumerate	turtles	imaged	during	drone	flights.	Aspects	of	the	CNN	de-
ployed in this workflow are visually expanded in Figures 3 and 4 below.

2.5 | Data input and cleaning

A visual inspection of turtles in the images revealed that each tur-
tle could fit within a 50 × 50 pixel spatial region. Based on this ob-
servation, each image was decomposed into an array of 100 × 100 
pixel windows, with 1/3 overlap in the x and y directions (N	=	2,806	
windows per image). The overlap was chosen so that turtle centres 
would fall within or near the interior region of only one window, to 
minimize instances of missed or duplicated turtle detections be-
cause of window centring. A binary classification approach was used 
in which these 100 × 100 pixel windows were denoted with the 
positive class (1) if the central 50 × 50 region contained the centre 
of a turtle. If a window did not contain a turtle in the centre, it was 
denoted with the negative class (0).

2.6 | Neural network architecture and training

Each	training	example	for	the	CNN	was	comprised	of	a	100	×	100	×	3	
tensor (x × y	×	Green,	Red,	Near	Infrared)	and	the	accompanying	label	

F IGURE  2 Overview of convolutional neural network development, application and output as applied to drone imagery of olive ridley 
turtles in the coastal waters of Ostional, Costa Rica
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classifying the example as negative or positive (0 or 1 respectively). 
Examples of the positive class (N = 944) were assembled by cropping 
the images around each labelled (x + dx, y + dy) turtle coordinate, 
where the variables (dx, dy) have a uniform random distribution be-
tween	−25	and	+25.	Thus,	 the	positive	examples	all	had	turtle	cen-
tres randomly distributed in the interior 50 × 50 pixel spatial region. 
This was done to simulate the random positioning of turtles within 
windows extracted from new images in deployment. Although there 
were no instances of multiple turtles within the centre of a 50 × 50 
pixel region in the training data, this approach would count multiple 
turtles in that 50 × 50 pixel region as one. Using a class balance of 10 
negative examples for each positive example in our training data, ex-
amples of the negative class (N = 9,440) were assembled by cropping 
random 100 × 100 pixel windows from the image library, provided the 
centre of the window was at least 125 pixels away from the centre 
of a labelled turtle (in both the x and y directions). This led to a total 
of	10,384	labelled	examples.	To	train	the	CNN,	a	random	85%	of	the	
positive and negative examples were chosen as training data and the 
remaining 15% used as validation data.

Given the training dataset was comprised of only N	=	8,826	
examples,	a	CNN	of	modest	size	was	employed	(Figure	4).	For	de-
tailed	 information	on	general	CNN	architecture	and	training,	see	

Lecun	et	al.	(2015)	for	a	technical	yet	cogent	overview.	The	CNN	
for this study was comprised of four convolutional layers with 
sixty- four 3 × 3 kernels interleaved with max pooling layers. These 
convolutional	layers	form	the	backbone	of	the	CNN	and	slide	over	
the image essentially outputting heatmaps of various features 
within	the	 image,	called	feature	maps.	Our	CNN	with	64	kernels	
will	 output	64	 feature	maps	 at	 each	 convolutional	 layer.	 The	 in-
terwoven max pooling layers slide over the convolutional layer's 
feature maps with a 2 × 2 window and output the maximum value 
in that window. Important features from the maps are typically 
still retained by this simple max operation while the overall size 
of	the	feature	maps	is	reduced	with	each	iteration.	Thus,	the	CNN	
keeps the same effective “field of view” while considerably re-
ducing dimensionality. Including multiple iterations of interleaved 
convolutional and max pooling layers, developing a smaller feature 
map	each	run-	through,	permits	a	CNN	to	ingest	noisy	and	variable	
images, find useful features within them and condense that into a 
relatively small yet informative final feature map. The first layer 
of	a	CNN	typically	creates	maps	of	features	such	as	edges,	curves	
and colour gradients. The feature maps created in deeper layers in 
a	CNN	are	more	abstract	and	aggregate	the	previous	layer's	fea-
ture maps; in our case, combining them into groups of curves and 

F IGURE  3 Overview	of	convolutional	neural	network	(CNN)	“Model	Application”	from	Figure	2.	Unoccupied	aircraft	system	(UAS)	
images	were	subdivided	into	100	×	100	pixel	windows,	which	served	as	input	to	the	CNN.	The	CNN	then	computed	a	probability	that	each	
window included a turtle
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edges that may indicate turtle flippers or shells. Through this pro-
cess,	the	CNN	extracts	the	distinguishing	features	that	will	permit	
effective classification. This process of feature extraction was fol-
lowed by two fully connected layers of 1,024 neurons. In order to 
prevent overfitting of the model, 50% of the connections between 
the neurons of these two fully connected layers were randomly 
ignored (dropout ratio of 0.5) during training.

The	fully	connected	layers	take	the	final	64	feature	maps,	ideally	
representing useful and high- level image components, and learn a 
mapping from those feature maps to the output classes (turtle–non- 
turtle). We used a binary normalized exponential (softmax) function 
output layer, which takes the final, fully connected layer and provides 
a continuous value between 0 and 1 for each window. Values closer 
to 1 indicate a higher likelihood that a turtle is present in the central 

F IGURE  4 Overview	of	the	convolutional	neural	network	(CNN)	architecture.	The	CNN	had	four	convolutional	layers	alternating	with	
max	pooling	layers,	these	layers	perform	the	feature	extraction	for	the	CNN,	effectively	distinguishing	which	aspects	of	the	image	are	
informative for classification. These layers were followed by two fully connected layers of 1,024 neurons which combine the previously 
extracted features into meaningful combinations that ideally provide some predictive power for classification. The final layer employed a 
binary normalized exponential (softmax) function which ingests the final fully connected layer and its learned combinations of features, and 
returns a value between 0 and 1, with higher values signalling higher confidence of a turtle in the image window

F IGURE  5 Screenshot of the custom application used to rapidly review turtle detections
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50	×	50	 region	 of	 the	 window.	 The	 CNN	 was	 trained	 to	 optimize	
the performance of the classification model (via a categorical cross- 
entropy, or log loss function) using stochastic gradient descent, with 
a	learning	rate	of	0.01	and	a	Nesterov	momentum	of	0.9.	Training	was	
continued over 20 epochs, after which the model parameters were 
selected from the epoch resulting in the lowest loss on the validation 
set of N = 1,558 (N = 153 of which contained turtles).

2.7 | Model validation

Detections were reviewed with an internally developed custom user 
interface, allowing quick review of the 100 × 100 pixel windows, 
sorted	by	the	CNN's	output	turtle	likelihood	(Figure	5).	The	tool	uses	
a variety of keyboard shortcuts to note and correct instances of du-
plicate detections, false positives or any false negatives encountered.

Because the windows overlapped by 30%, we detected some 
turtles more than once. When there was more than one detection of 
a turtle, we selected the window that included a larger proportion of 
the turtle or the turtle closest to the centre of the photo. Double de-
tections were removed manually by sorting true detections in photo 
capture order and marking duplicates with a new label.

3  | RESULTS

3.1 | Model performance

The overall accuracy of our model to detect turtles was 99.83%, 
however, overall accuracy is not the best metric in classification 
problems with a sparse class of interest such as our study species, 

where the vast majority of image windows do not contain turtles. 
Instead, we present recall and precision as metrics of model per-
formance. Recall describes the number of true positives from the 
model divided by the total number of true positives in the data, or 
simply, what proportion of true positives were detected. Precision 
describes the number of true positives from the model divided by 
the total number of detections by the model, again more simply, 
what proportion of detections were actually correct. After train-
ing and validation, the model was tuned to prioritize recall in order 
to miss as few true positives as possible, at the cost of additional 
false positives, with a detection probability threshold of 0.93. Out 
of	2,971,554	total	windows	 (1,059	 images	each	broken	 into	2,806	
windows of 100 × 100 pixels), at this threshold the model flagged 
6,696	windows	as	having	turtles.	Of	those	6,696,	we	manually	 re-
viewed all windows and found there were 874 with certain turtles, 
218	with	probable	turtles	and	5,402	with	no	turtles	(Figure	6).	Recall	
and precision metrics were calculated by combining the certain 
and probable turtle counts (Table 1). Accuracy, precision and recall 
were quantified without manually verifying all 2,971,554 windows 
by reviewing all windows with a detection probability of 0.93–0.05 
(N = 44,799). This lower bound was determined empirically, while 
turtles could still exist in windows below that number, we found 
negligible true positives below a probability threshold of 0.15 and 
made the assumption that the total number of turtles detected, as 
well as our precision and recall statistics, would not change materi-
ally with further review below the 0.05 probability threshold. This 
assumption prevented the necessity to manually review the remain-
ing	 2,926,732	 windows	 below	 the	 0.05	 threshold.	 At	 this	 lower	
threshold, 199 additional certain turtles and 137 probable turtles 

F IGURE  6 Distribution of certain 
and probable turtle detections from 
the convolutional neural network after 
the output was manually validated. 
Unoccupied aerial system (UAS) flight 
paths show distribution of turtle 
detections along survey transects
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were	found,	and	44,463	windows	with	no	turtles.	Assuming	these	
are	all	of	the	turtles	within	our	dataset,	this	leads	to	16.3%	precision	
and	76.5%	recall	when	using	the	0.93	probability	threshold	for	this	
model (Figure 7). The recall for our testing dataset closely matched 
the validation data (Figure 7a) while precision was poorer in the test-
ing dataset (Figure 7b) suggesting slight model overfitting.

3.2 | CNN vs. manual counts

Using the same review method that generated the training data, 
a	comparison	of	verified	CNN	detections	 to	manual	counts	shows	

similar results but marginally better detection capability, approxi-
mately 8%–9%, for both certain and probable turtle detections with 
the	CNN	(Table	2).

3.3 | Model validation effort

It took 1 hr of analyst time to review detections from the 0.93 
threshold	(6,696	windows).	It	took	an	additional	11.8	hr	to	review	all	
detections between probability thresholds of 0.93 and 0.05 (44,799 
windows).

4  | DISCUSSION

Our study represents the first use of deep- learning methods to as-
sess	at-	sea	densities	of	sea	turtles.	Results	of	the	CNN	analysis	are	
similar to manual counts of the same imagery in a previous density 
assessment	 (Sykora-	Bodie	et	al.,	2017).	The	CNN	approach	 identi-
fied 8%–9% more turtles (Table 2), suggesting previous assessment 
should be viewed as conservative. Overall, our results demonstrate 
the feasibility of using neural networks to facilitate the analysis of 
images acquired for the purpose of monitoring animal populations. 
The general approach described here can also be applied to aerial 
surveys for other species large enough to be detected in coastal or 
pelagic	marine	environments.	This	study	illustrates	how	CNNs	can	

F IGURE  7 Convolutional neural 
network (a) recall, (b) precision, and (c) 
precision- recall curve for training (red) 
and full testing (black) data. Recall is 
the number of true positives from the 
model divided by the total number of 
true positives in the data. Precision is the 
number of true positives from the model 
divided by the total number of detections 
by the model. These two values represent 
model performance. Our model was tuned 
to optimize recall at the cost of precision

TABLE  1 Confusion matrix for turtle detection results when the 
model is tuned to show detections above the 0.93 confidence 
threshold

Predicted

Turtle Non- turtle

Validated

Turtle 1,092 336

Non-	turtle 5,604 2,964,522a

Note. Shaded cells represent windows that were correctly classified (true 
positives and true negatives).
aValidated non- turtle numbers are based on manually verifying windows 
down to a 0.05 probability threshold. 
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facilitate efforts to enumerate sea turtles in drone imagery and elim-
inate analyst biases introduced during manual counts.

In many conservation studies, researchers must balance the risks 
of committing Type I and Type II errors. Most statistical analyses of 
scientific data focus on reducing Type I errors in an effort to maxi-
mize the ability to reject null hypotheses with confidence. In conser-
vation biology, however, the consequences of committing a Type II 
error are often far worse (Shrader- Frechette, 1994). Thus, research-
ers typically adopt approaches that minimize the likelihood of mak-
ing Type II errors. When applying a machine learning approach to 
counting species at risk, researchers can tune the system to minimize 
either Type I or Type II errors by balancing recall (the number of true 
positives from the model divided by the total number of true posi-
tives in the data) and precision (the number of true positives from 
the model divided by the total number of detections by the model).

In the context of this study, our model reduced the manual anal-
ysis burden to 1.5% of the initial amount using a 0.93 probability 
threshold. This was achieved without a diminished ability to detect 
turtles, in fact the model identified more turtles in a subset of the im-
agery than were identified using manual counts. While many deep- 
learning systems must reach predictably high precision and recall 
(e.g., detecting a stoplight in a vision system for a self- driving car), 
models applied to ecological data can be tuned to achieve alternative 
outcomes and can be useful even when they have low precision. Our 
model probability threshold was intentionally set low, minimizing the 
likelihood of committing Type II errors (i.e., failing to detect a turtle 
when	it	is	present)	when	assessing	images.	Here,	we	accept	the	fi-
nancial cost of marginally more analyst time to review detections in 
an effort to generate the most robust density information for con-
servation purposes.

Although our model's precision is likely acceptable for many con-
servation applications, our testing data yielded lower precision than 
did the training and validation data (Figure 7). This difference is likely 
due	 to	some	overfitting	of	 the	CNN	on	 the	 training	data,	perhaps	
caused by the limited number of training samples and differences 
between the training and testing datasets, which were captured on 
different days, under different weather and sun angle conditions and 
contained some land images which were not in the training dataset. 
CNNs	are	prone	 to	overfitting	 in	circumstances	of	 limited	 training	
data and if the network is too large for the given relationships it is 
attempting	 to	model	 (Srivastava,	Hinton,	 Krizhevsky,	 Sutskever,	&	
Salakhutdinov, 2014). Our training sample class imbalance (10:1 neg-
ative to positive), while improving precision and recall on the vali-
dation set, may have also decreased precision in our testing data. 

A larger training dataset with examples of more varied image con-
ditions might help mitigate this issue. The main sources of false de-
tections in this study were large jellyfish, breaking waves and glare. 
Planning flights to reduce glare (e.g., during periods of lower sun 
angle),	as	well	as	image	processing	prior	to	CNN	application,	could	
substantially reduce these errors. For this study, our goal was to 
build	a	robust	CNN,	able	to	function	well	under	variable	conditions,	
in order to avoid imposing additional constraints on drone flights.

Major	benefits	of	CNNs	include:	 (a)	they	can	be	applied	across	
images in different conditions, and (b) the model can be repeatedly 
upgraded using additional training data (Oquab, Bottou, Laptev, & 
Sivic, 2014). Thus, when new imagery is acquired during future de-
ployments, the performance of the model can be improved by fol-
lowing the same initial process (lowering the probability threshold 
and manually inspecting detections), then adding the additional im-
ages of verified turtles into a new, larger training dataset. This it-
erative approach is likely to be useful across many similarly noisy 
and imbalanced datasets, increasing precision, improving detection 
of rarer image variants and saving considerable time relative to the 
brute- force manual inspection of all data.

The	 next	 iteration	 of	 this	 study's	 CNN	 could	 be	 trained	 to	
identify false positive generating classes in addition to the primary 
class of interest. This has been shown to force the neural network 
to better separate these objects within its internal representa-
tion and thus reduce false positives (A. B. Fleishman, unpublished 
data). While not an issue in our study, adjustments should be made 
to permit detection of multiple turtles within close proximity, 
given that our current model would count multiple turtles within 
the 50 × 50 pixel region as a single turtle, in order to increase use-
fulness on data with denser aggregations or mating behaviour. 
Beyond these two relatively minor changes, further understanding 
how	fine-	tuning	a	pre-	trained	CNN	compares	to	our	network	built	
from	scratch	will	be	beneficial.	Fine-	tuning	a	CNN	is	the	process	
of beginning with a pre- trained model, trained on a large dataset 
such	as	 ImageNet	 (Deng	et	al.,	2009)	or	 the	Common	Objects	 in	
Context dataset (Lin et al., 2014), and then adding in additional 
training samples specific to the desired detection problem. This 
process, more generally called transfer learning, has been shown 
to allow fewer training samples (Razavian, Azizpour, Sullivan, & 
Carlsson, 2014) and reduce overfitting (Yosinski, Clune, Bengio, 
& Lipson, 2014), thus increasing the potential applicability of this 
method in real- world biology scenarios (Schneider et al., 2018). If 
the	CNNs	from	our	study	were	first	 trained	on	 ImageNet,	which	
would build out many of the class agnostic image process capabil-
ities, such as edge detectors, and then trained on our turtle data-
set, we hypothesize there would be a noticeable improvement in 
precision. A final avenue of inquiry is comparison of this custom- 
designed	 CNN	 architecture	 to	 models	 currently	 available	 open	
source and “off the shelf” that provide state- of- the- art results in 
other	domains	 (Lin,	Goyal,	Girshick,	He,	&	Dollar,	2017;	Ren,	He,	
Girshick, & Sun, 2017).

Open-	source	 CNN	 implementations,	 combined	 with	 transfer	
learning,	will	allow	CNNs	to	be	improved	upon	with	additional	data	

TABLE  2 A comparison of manual turtle counts, detections from 
the	convolutional	neural	network	(CNN),	and	the	per	cent	
difference	from	manual	count	to	the	CNN-	based	method

Manual CNN % Difference

Certain 384 418 +8.9

Probable 253 274 +8.3

Total 637 692 +8.6
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and fed back into the community, considerably enhancing our abil-
ity	 to	detect	 and	 study	wildlife.	 Improvements	 in	CNN	speed	and	
efficiency may eventually permit detectors to run in real- time on 
UAS	 (Huang	 et	al.,	 2017),	 facilitating	 autonomous	monitoring	 and	
behavioural analysis. In order to build out these capabilities, we ad-
vocate for the creation of appropriately sized open- access training 
datasets of aerial imagery for all sea turtle species in various condi-
tions,	permitting	rapid	creation	and	 improvement	of	CNNs	for	sea	
turtle population monitoring globally.
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