
RESEARCH POSTER PRESENTATION TEMPLATE © 2019

www.PosterPresentations.com

Creating Custom Loss Functions for Multiclass Classification

The loss D is calculated according to this equation and returned as the loss value to the neural network. After the loss is 
calculated, the matrix A is updated using the observed outputs S and the correct label L. The matrix is updated as follows:

1. Identify the column in matrix A to be updated – this is the column that corresponds to the correct label
2. Aggregate the predictions given to incorrect labels and find the average percentage given per label
3. Iterate through each entry in the output, ignoring the entry corresponding to the correct label
4. If an entry is larger than the measured average, raise the corresponding entry in matrix A, using a weighted sigmoid to 

maintain entry bounds
5. If an entry is lower than the measured average, lower the corresponding entry in matrix A, using a weighted sigmoid to 

maintain entry bounds
6. Return the new matrix A

The weighted cost matrix is multiplied in the loss function first by the label to isolate the correct column, and then by the
exponential function of the predicted label Si. By lowering or raising entries in the cost matrix, the loss function eventually 
builds in higher loss for classes that are commonly obfuscated with the correct class.
After each loss is calculated, the matrix column that corresponds to the correct label is updated to weight a higher loss for
commonly obfuscated (and incorrect) labels. 

Duke Bass Connections: Deep Learning & Remote Sensing for Coastal Resilience

Researcher: Yousuf Rehman, Advisors: Patrick Gray, Guillermo Sapiro

INTRODUCTION

OBJECTIVES

METHODS

CODE

OTHER LOSSES EXPLORED

REFERENCES

A variety of loss functions are built into machine 
learning libraries such as Keras and Tensorflow. Our 
project involves outputting predictions of six different 
types of landcover types commonly found in Eastern 
North Carolina: water, developed, forest, cultivated, 
barren, and wetland. In traditional categorical 
crossentropy, the predicted labels, which come from 
the output of the softmax function, is compared to the 
ground truth label by the following function:

The Proposed Loss Function was built to dynamically modify after each loss D is calculated. The function modifies by 
changing the entries in the weighted cost matrix A after every loss calculation. The columns in the cost matrix 
correspond to entries in the label, and the entries in each column are weighted depending on how often each 
corresponding output entry appears and the weight of the corresponding output entry. The loss is therefore calculated 
not only by the magnitude of the correct label in the output, by also by the relative magnitudes of each of the incorrect 
predictions of the output as well. 

The proposed loss function was able to return higher 
loss in response to competing, commonly obfuscated 
data labels, and lowered loss when incorrect 
predictions were distributed more evenly across the 
different labels. However, after using this loss on the 
RCNN, there was little improvement in accuracy. 
Further modifications and tuning would need to be 
carried out to adjust the exponential function and 
sigmoid function parameters used to map data. 
Further modifications could also include adding 
boosting.

After training our classifier, we examined how 
classes were mislabelled. We noticed that some 
classes were confused with other classes more 
often, as represented by this confusion matrix: 

The regular categorical crossentropy loss function 
only takes into account the degree by which the 
outputted and the correct answer vary, but does 
not look at patterns in incorrect answers. 

The objective was to create a new crossentropy
function that extends categorical crossentropy by 
introducing loss factors from the incorrect label 
data in the output. The hypothesis is that 
harnessing past data on which incorrect labels 
appear more often can speed up the learning 
process and place emphasis on differentiating 
labels that are often confused with each other.

MATRIX UPDATING

RESULTS

Hinge Loss

Logcosh

Huber Loss: 

Logcosh loss is twice differentiable everywhere, 
allowing for using Newton’s method to find the 
optimum. By using the Hessian, boosting can be 
introduced to arrive at the optimum weights faster.

https://www.machinecurve.com/index.php/2019/10/15/
how-to-use-hinge-squared-hinge-loss-with-keras/

https://hearbeat.fritz.ai/boosting-your-machine-
learning-models-using-xgboost-d2cabb3e948f

https://Towardsdatascience.com/custom-loss-
functions-for-deep-learning-predicting-home-values-
for-keras-for-r-532c9e098d1f

https://Keras.io/losses

https://www.machinecurve.com/index.php/2019/10/15/how-to-use-hinge-squared-hinge-loss-with-keras/
https://hearbeat.fritz.ai/boosting-your-machine-learning-models-using-xgboost-d2cabb3e948f
https://Towardsdatascience.com/custom-loss-functions-for-deep-learning-predicting-home-values-for-keras-for-r-532c9e098d1f
https://Keras.io/losses

